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Abstract— Left ventricular assist devices (LVADs) are me-
chanical pumps that help patients with chronic heart failure
waiting for a heart transplant. Mathematical models of these
devices can be used along cardiovascular system (CVS) models
to evaluate the assistance performance under different oper-
ating modes. The estimation of the CVS model parameters
for a particular patient and numerical simulations allow the
implementation of adequate LVAD operation mode. This work
presents a method to estimate the parameters of a CVS model
using only one hemodynamic variable: the systemic arterial
pressure (Ps). Synthetic signals of Ps are used to solve this ill-
posed inverse problem partially, and the results show the high
accuracy of the proposed method, which achieves 0.5%.

Clinical relevance— The measurements of hemodynamic
variables using noninvasive techniques avoid many clinical
problems arising from invasive measures such as infections.

I. INTRODUCTION

Cardiovascular diseases have remained the leading causes
of death globally in the last 15 years. Ischaemic heart disease
and stroke were the leading causes of cardiac death, with
15.2 million deaths in 2016 [1]. Only in the USA, more than
250,000 patients suffer from advanced systolic Heart Failure
(HF), and there exists a population of 500,000 patients in
the European Union [2]. Although classical treatments such
as advanced pacemakers or implantable defibrillators have
changed the prognosis in HF patients, heart transplantation
remains the optimal treatment for HF. As an alternative
treatment, ventricular assist devices (VAD’s) have been used
as a bridge to transplant or even as destination therapy
because of the lack of donors.

The use of numerical models from cardiovascular systems
(CVS) and VADs can support several clinical and experi-
mental strategies. For example, coupled CVS-VAD models
can be brought to analyze the cardiovascular response under
VAD assistance with physiological control systems [3]. In
these cases, although it is possible to change all controller
parameters during the tuning process, the performance is
evaluated against a CVS model with generic parameters that
do not represent a particular patient.

The parameter estimation of a specific CVS model is not
a simple task because it has to be done from hemodynamic
variables. Pironet et al. [4] consider a seven-parameter model
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of the CVS and investigated which of these parameters
could be uniquely determined using indices derived from
measurements of experimental animal data such as arterial
and venous pressures and stroke volume. Yu et al. [5] make
use of an extended Kalman filter estimator for the parameter
identification of a lumped element circuit with a time-varying
capacitor used to represent the systemic circulation and the
left ventricle. This study shows that flow measurements
are necessary to estimate the individual model parameters.
However, these variables are impossible to obtain in some
clinical settings and difficult under any conditions.

Faragallah et al. [6], developed a feedback control system
to automatically adjust the pump motor current to provide
blood flow in response to the level of activity of the patient,
which is determined following an inverse problem approach.
The results were simulated using a CVS model to reproduce
the left ventricle and systemic circulation behavior correctly.
The authors used pump flow as the data and estimated the
systemic vascular resistance, Rs.

This work presents a method based on inverse problem
theory to estimate the parameters of a CVS model using
only one hemodynamic variable is used: the systemic arterial
pressure (Ps). It is due to the ease of accessing its measure in
clinical settings by noninvasive methods. Sensitivity analysis
is done to determine the effect of all CVS model parameters
on the behavior of Ps(t) and then discard those irrelevant to
the parameter estimation problem.

II. CARDIOVASCULAR SYSTEM MODEL

The CVS model used in this work is based on the
one developed by Simaan et al. [7]. It consists of a 5th
order nonlinear electric circuit (lumped parameter model)
capable of reproducing the left atrial pressure, left ventricular
pressure, aortic pressure, total flow, and systemic arterial
pressure (Fig. 1).
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Fig. 1. 5th order nonlinear electric circuit (lumped parameter model) of
the CVS.

In this model, the left atrium is represented by the capac-
itor Cla; the mitral valve is represented by both resistor Rm
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and diode Dm; the aortic valve is represented by both resistor
Ra and diode Da; the left ventricle is modeled by the time-
varying capacitor C(t); the aortic compliance is represented
by the capacitor Cao and the systemic arterial circulation
comprising the elements Rc, L, Cs and Rs is modeled using
a four-element Windkessel model. All parameters of the CVS
model and their associated values are listed in Table I.

TABLE I
PARAMETERS OF THE CVS MODEL.

Resistances (mmHg s/ml)
Rs 1.0000 Systemic vascular resistance
Rc 0.0398 Characteristic resistance
Rm 0.0050 Mitral valve resistance
Ra 0.0010 Aortic valve resistance
Compliances (ml/mmHg)
C(t) Time Left ventricular Compliance

varying
Cae 4.4000 Left atrial compliance
Cs 1.3300 Systemic compliance
Cao 0.0800 Aortic compliance
Inertances (mmHg s2/ml)
L 0.0005 Inertance of blood in aorta

Simaan et al. [7] uses a time-varying elastance function,
E(t), for modeling the behavior of the left ventricle. It is
calculated as follows:

E(t) = (Emax − Emin)En(tn) + Emin (1)

where the constants Emax and Emin are related to the
ventricular condition. The term En(tn) is a normalized
elastance defined as follows:

En(tn) = 1.55

[ (
tn
0.7

)1.9
1 +

(
tn
0.7

)1.9
][

1

1 +
(
tn
1.17

)21.9
]

(2)

where tn = t/Tmax is the normalized time, Tmax = 0.2 +
0.15tc and tc is the cardiac cycle, i.e., tc = HR/60, where
HR is the heart rate.

The function E(t) describes the relationship between the
ventricular pressure and the ventricular volume and can be
defined according to the following expression [8]:

E(t) =
Plv(t)

Vlv(t)− Vo
(3)

where Vo is an empirical constant over a wide range of
intraventricular volume. By using equation (3), and assuming
Vlv(t) is an available state variable that can be obtained
from the state vector, Plv(t) might be calculated as Plv(t) =
E(t) [Vlv(t)− Vo] and the use of the derivative of the time-
varying capacitor C(t) is avoided. It was made because
this term may cause numerical instabilities [9]. The variable
Vlv(t) is calculated as:

V̇lv(t) =Qm(t)−Qao(t)

=
Da

Ra
Pao(t)−

[
Dm

Rm
+
Da

Ra

]
E(t)Vlv(t)

+
Dm

Rm
Plv(t) +

[
Dm

Rm
+
Da

Ra

]
E(t)Vo (4)

where Qm is the flow from left atrium to left ventricle during
the filling phase and Qao(t) is the flow from left ventricle
to aorta during the ejection phase. The new state vector is
defined as

x(t) = [Pao(t), Qao(t), Vlv(t), Pas(t), Pla(t)]
T (5)

where Pao(t) is the aortic pressure, Qao(t) is the total flow
through inductance L, Vlv(t) is the left ventricular volume,
Pas(t) is the systemic arterial pressure and Pla(t) is the left
atrial pressure.

We also adapted the implementation of the heart valve’s
behavior. Now, the ideal diodes Da and Dm take values of
either 1 if the valve is open; or 0 if the valve is closed.
Using basic circuit analysis methods, it is possible to derive
five differential equations to describe this CVS model. The
matrix equation of the CVS system is given by

ẋ(t) = A(t)x(t) +B(t) (6)

where the matrices A(t) and B(t) are given by

A(t) =
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 (7)

with a33 = −
[
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Rm
+ Da

Ra

]
E(t), a55 = −1
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[
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]
and:
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 (8)

III. SENSITIVITY ANALYSIS

For the estimation problem described in this work, the pa-
rameters that are regarded as unknown quantities are in vec-
tor θ = [Rs, Rc, Rm, Ra, Cla, Cs, Cao, Ls, Emax, Emin].
To evaluate the influence of deviations in all parameters of
θ on the Ps(t), the normalized sensitivity was calculated as:

SPas

θi
(t) =

θi
Ps

∂Ps
∂θi

, (i = 1 . . . , N) (9)

where SPas

θi
is the normalized sensitivity, θi is the i-th

parameter of θ and N is the order of θ [10]. In this paper,
only Ps(t) was analyzed it can be obtained from non-invasive
measurements.

The sensitivity analysis was done changing the values of
θ in 5% and examining the sensitivity curves corresponding
to each parameter of θ during a cardiac cycle of 1 second
(Fig. 2). The curves in Fig. 2.(a), SPas

Emax
and SPas

Rs
, are the

two higher; and the curves in Fig. 2.(b), SPas

Rm
and SPas

Ra
, are

the two lower, which are referent to the mitral valve and
aortic valve resistances respectively. Only these four curves
were shown to facilitate this analysis once maximum and
minimum values of the other curves are between them.
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Fig. 2. Sensitivity curves of Ps with respect to variations in the parameters
Emax, Rs, Rm and Ra.

These results indicate that Ps has a very low sensitivity
to the parameter Ra, which means that a little ability to
determine this parameter is expected. So, this parameter will
not be estimated and its value will be maintained as in the
original model [7].

IV. INVERSE PROBLEM

Different methods have been successfully used in the past
to estimate parameters in linear and non-linear inverse prob-
lems. For definitions, techniques and algorithms of inverse
problems, see [11] and references therein.

As explained in the previous section, the parame-
ter Ra were not included in the estimation process.
Therefore, the new vector of parameters is defined as
θ = [Rs, Rc, Rm, Cla, Cs, Cao, Ls, Emax, Emin], where
Ps(θ) is the systemic arterial pressure depending on the
values of θ. Thus, the inverse problem here is to determine
θ for a specific patient only from his P ∗

s in such a way the
resulting F(θ) is very close to the data of the patient P ∗

s . It
is a minimization problem that can be formulated as follow:

θ = min
θ
‖P ∗

s −F(θ)‖ (10)

subject to:

LBi ≤ θi ≤ UPi, for i = 1, 2, . . . , N. (11)

where ‖ ·‖ is a norm, F is the operator that maps θ to Ps(θ)
using Equation (6) and LBi and UBi are the lower and upper
bounds for the parameters.

V. RESULTS AND DISCUSSIONS

This section presents an example using synthetic signals
to illustrate the model developed in this paper. Firstly, it is

TABLE II
THE GROUND TRUTH, INITIAL POINTS, ESTIMATED VALUES AND

RELATIVE ERRORS OF THE PARAMETER ESTIMATION

ground initial estimated relative
truth points values errors

Rs 1.20000 1.55313 1.19560 0.00366
Rm 0.00550 0.00593 0.00553 0.00688
Rc 0.03990 0.04905 0.03986 0.00089
Cla 4.80000 3.25727 4.85713 0.01190
Cs 1.50000 1.05328 1.50454 0.00302
Cao 0.08500 0.13831 0.08635 0.01596
Ls 0.00055 0.00064 0.00055 0.00626
Emax 1.54000 1.16660 1.54456 0.00296
Emin 0.06000 0.04573 0.05976 0.00392

supposed the ground truth of parameters is given in Table
II. It is important to emphasize that these values are used in
this work only as a proof of concept.

The Ps is calculated from Equation (6) by using the 4th
order Runge-Kutta method in a fine mesh with a step size
equal to 0.00005. Then, Gaussian noise is added, that is:

P εs = Ps × (1 + δN (0, 1)) (12)

where δ = 0.005 represents some error when the blood
pressure is measured.

In order to avoid the inverse crime [12], P εs is interpolated
to a coarser mesh with step size equal to 0.0001. Finally, the
inverse problem is solved to estimate the parameters in the
coarser mesh using the MATLAB function lsqnonlin with
the default ’trust-region-reflective’ algorithm [13]. The initial
value of each θi is randomly chosen between LPi and UPi
values, as stated in Equation (12). The initial points and the
estimated values also can be seen in Table II, as well as the
relative errors (RE) that are calculated using the ground truth
value, θi, and the estimated value, θ̂i, as follow:

REθi =

√
(θi − θ̂i)2

θi
(13)

The evolution of every parameter during the optimization
steps can be seen in Figure 3, showing that all the parameters
converge very fast. The evolution of the estimated values of
Emax and Rs, which are the parameters with the two high
sensitivities curves, can be seen in Figures 3.(a) and 3.(b).
Although the parameter Rm has the second lower sensitivity
curve, it has not the most significant RE, as can be seen in
Figure 3.(c). In Figure 3.(d) it is shown the evolution of the
parameter Cao, which has the most significant RE.

With the estimated values of all parameters, Ps can be
recovered and compared with P εs that was generated with
ground truth values and after polluted with Gaussian noise
(Fig. 4). It can be seen that these two arterial pressures are
very close with the residual equal to 0.5%.

VI. CONCLUSION

In this work, an inverse problem approach is applied to
estimate the parameters of the CVS model developed by
Simaan et al. [7] only from data of systemic arterial pressure.
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Fig. 3. The estimated (blue) and the ground true (red) values for the parameter Cs.
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Fig. 4. Comparison between P εs , generated with ground truth values, Ps,
generated with estimated parameters and polluted with Gaussian noise.

The importance of this approach is to provide a patient-
specific cardiovascular model to improve the performance
of treatments, such as the tuning of the controllers applied
to ventricular assist devices [3].

By solving the optimization problem, nine of ten param-
eters are estimated and can be used to recover the arterial
pressure with a minimum relative error. Although sensitivity
analysis has shown that the curve of Ps is little sensitive to
parameters Ra and Rm, the RE of Cao was more significant
than all others. Thus, other sensitivity analyses must be done
to investigate this fact better.

In the optimization problem stated in (11), the search
space of each θi is reduced by LBi and UBi. The values of
these bounds are empirically defined, which can generate a
stability problem. So, the general stability of the CVS model
must be deeply considered to avoid numerical instabilities
and non-physiological values for the parameters of vector θ.

In future work, real ECG signals will be used in place of
synthetic data as input of this estimation method. Besides,
additional hemodynamic variables obtained by non-invasive
techniques, such as R-wave amplitude and estimates of
cardiac output, will be considered.
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