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Abstract— Deep learning-based cuff-less blood pressure (BP)
estimation methods have recently gained increased attention
as they can provide accurate BP estimation with only one
physiological signal as input. In this paper, we present a simple
and effective method for cuff-less BP estimation by training
a small-scale convolutional neural network (CNN), modified
from LeNet-5, with images created from short segments of the
photoplethysmogram (PPG) signal via visibility graph (VG).
Results show that the trained modified LeNet-5 model achieves
an error performance of 0.184± 7.457 mmHg for the systolic
BP (SBP), and 0.343±4.065 mmHg for the diastolic BP (DBP)
in terms of the mean error (ME) and the standard deviation
(SD) of error between the estimated and reference BP. Both the
SBP and the DBP accuracy rank grade A under the British
Hypertension Society (BHS) protocol, demonstrating that our
proposed method is an accurate way for cuff-less BP estimation.

I. INTRODUCTION

Continuous and non-invasive blood pressure (BP) mon-
itoring techniques are highly desirable for managing hy-
pertension and preventing the progression of cardiovascular
diseases. Existing brachial cuff-based BP monitors are not
capable of continuous monitoring of the BP levels due to
their requirement of intermittent manual operation, and the
needed prolonged 30 ∼ 40 seconds interval for obtaining
one pair of systolic BP (SBP) and diastolic BP (DBP)
readings. Therefore, cuff-less BP monitoring methods have
been pursued in the past decades.

Existing cuff-less BP estimation methods generally fall
into two categories: model-driven and data-driven. Model-
driven approaches aim at deriving theoretical models that
estimate BP from pulse transit time (PTT), based on the
relationship between the BP and the pulse wave velocity
(PWV). These methods usually require to receive input from
at least two physiological signals (placed at proximal and
distal spots). On the other hand, data-driven methods enable
obtaining estimates of BP from only one physiological signal
(e.g. photoplethysmogram (PPG)) [1], [2].

Recently, deep learning models have been applied to
enable end-to-end learning from raw PPG signals to BP
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estimation. The strong feature-learning capability of deep
neural networks (DNNs) enables embedded feature extrac-
tion from raw or simply-transformed PPG signals, elimi-
nating the procedures of manually selecting and extracting
features. For example, in [3], a customized spectral-temporal
DNN architecture was used by combining multiple residual
networks (ResNets) and gated recurrent units (GRUs) to
estimate BP from raw PPG signals, and mean absolute errors
(MAE) of 9.43 mmHg and 6.88 mmHg were reported for
SBP and DBP, respectively. In another example, in [4] a
siamese convolutional neural network (CNN) inspired by
AlexNet [5] was used to learn from the spectrogram of 30-
second PPG windows, where results of 7.34 (MAE) and
8.65 (standard deviation of error (SD)) mmHg for SBP, and
3.91 (MAE) and 4.48 (SD) mmHg for DBP were obtained.
However, these works use complicated, non-ordinary DNN
architectures, making the implementation of these algorithms
difficult.

Inspired by recent efforts of applying image classification
network architectures to images created from sensor signals
[6], [7], [8], [9], in this work, we propose a cuff-less BP-
estimation method in which images of short segments of
PPG signals are created by visibility graph (VG). In contrast
to our previous work [9], where transfer learning was used,
here, we use a modified LeNet-5 CNN, which is simple and
easily implementable and achieves much better performance.
Additionally, we compare the performance of our LeNet-5
CNN model with three other DNN architectures. As it will
be shown, our accuracy results for both the SBP and the
DBP rank grade A under the British Hypertension Society
(BHS) protocol, demonstrating that our proposed method is
an accurate and easy way for cuff-less BP estimation.

The rest of this paper is organized as follows. The pro-
posed method is introduced in Section II. The BP estimation
results are presented and discussed in Section III, and the
paper is concluded in Section IV.

II. METHODS

A. Dataset Information and Pre-processing

The “Cuff-Less Blood Pressure Estimation Dataset” from
the University of California Irvine (UCI) Machine Learning
Repository [10], which is a subset of the Multi-parameter In-
telligent Monitoring in Intensive Care (MIMIC) II waveform
database [11], was used in this study. Recorded directly from
the intensive care unit (ICU), a large portion of the MIMIC
database contains contaminated and unreliable signals, while
in the UCI dataset, high-quality records from the MIMIC
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Fig. 1. (a) Examples of PPG windows with defects that were removed
from the dataset. (b) Examples of accepted PPG windows.

database have been included. The UCI dataset contains
synchronized PPG, electrocardiogram (ECG), and arterial
blood pressure (ABP) signals sampled at 125 Hz. In this
study, only the PPG and the ABP signals were used.

12000 records of the UCI dataset were downloaded from
[12], and 200 records of PPG and ABP signals with duration
longer than 500 seconds were used. The reference SBP and
DBP values were extracted from the ABP signals, and were
used as ground-truth labels for model training and testing.

Records of PPG signals were separated into non-
overlapping beat-to-beat windows, such that one pair of
SBP/DBP estimation could be made from each window. Each
window was located by 3 consecutive systolic peaks and
contained 1 complete PPG cycle. To locate the position of
the systolic peaks, the algorithm in [13] was used. A total
number of 37228 PPG windows were obtained from the 200
selected records. Reference BP values of these PPG windows
were extracted from their corresponding ABP signal.

After the extraction of PPG windows, a manual selection
process was employed to exclude windows having any of the
following defects:
− Missing systolic peaks: Due to the variations in the

morphology of PPG waveforms, misdetection of the
systolic peaks could occur. Windows containing non-
systolic peaks or more than 3 systolic peaks were
excluded.

− Amplitude saturation: In some of the extracted PPG
windows, the waveform had saturated amplitudes (e.g.
flat horizontal lines), which could have been caused by
improper placement of the sensor during the recording.
Therefore, these windows were removed.

− Discontinuity: The UCI dataset is created by concatenat-
ing high-quality signal blocks from the MIMIC database
[10]. If a window is located across the intersection of
two blocks, then the PPG waveform in the window
will have discontinuities. These windows that do not
represent realistic PPG recordings were excluded.

− Overlength: In general, it is expected that the human
heart rate is above 60 beats per minutes (1 Hz). There-
fore, a proper PPG window located by 3 consecutive
systolic peaks should contain no more than 250 samples.
Windows with duration longer than this length were
removed.

Fig. 1(a) shows some examples of the PPG windows with
misdetection, saturation and discontinuity defects, while Fig.
1(b) displays examples of accepted PPG windows. After
this selection process, 3% of PPG windows were removed
from the dataset, and 36117 PPG windows from 169 records
were accepted. The mean and standard deviation of the
reference SBP and DBP values in the accepted dataset were
136.95±22.43 mmHg and 63.97±9.73 mmHg, respectively,
indicating sufficient BP variation for training and testing the
model.

B. Image Creation
The process of creating images from PPG recordings was

explained in [9]. Briefly, VG is a graph creation method that
transforms time series into undirected graphs [14], [15], and
have been previously used in processing of physiological
signals [16], [17]. To construct the VG for a time series,
each sample in the time series is considered as a node. The
graph is then formed by considering the natural visibility
between every two nodes. As such, the VG preserves the
morphological features of the time series. Following this
process, for each of the PPG windows zero-mapped to 250
samples, the VG is formed. Then, the adjacency matrix
for each graph is mapped into a single-channel 250× 250
gray-scale image, capturing the temporal-domain features
of the PPG waveform [18]. These VG images were then
consequently used to train DNNs for BP estimation.

C. Architectures of DNNs
Fig. 2 displays the architecture of four DNNs exper-

imented in this study. These architectures belong to the
following categories.

1) Modified LeNet-5: LeNet-5 [19] is a classic CNN
architecture taking single-channel 32×32 image as input for
hand-written digit classification. While the original LeNet-5
architecture uses hyperbolic tangent activation function and
average pooling, in this work, they were replaced with a more
modern combination of ReLU activation and max pooling.
The size, amount and activation functions of the dense layers
were also modified in accordance with the 250× 250 VG
inputs and 2 numerical outputs of SBP and DBP.

2) Modified electroencephalogram (EEG) classification
network: For performance comparison, the EEG classifi-
cation network used in [8] was also experimented in this
study. [8] shares a similar idea with our work as it utilizes
Gramian Angular Summation Field (GASF) to create images
from EEG signals to detect epilepsy. While the LeNet
architecture utilizes pooling after each convolutional layer,
the EEG classification network uses larger filter stride to
downsample the feature map, and includes an additional
batch normalization layer.

The original network proposed in [8] used 3×3 convolu-
tion kernel. In this study, an additional architecture using the
same 5×5 kernel as LeNet was also included for comparison.
For both the 3× 3 kernel and the 5× 5 kernel settings, the
dense layers after the convolutional layers were modified
for regression instead of classification, keeping a consistent
layout with the modified LeNet-5.
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Fig. 2. The architecture of four DNN models experimented in this study. Layers of the same type are shown with the same color.

TABLE I
SUMMARY OF REGRESSION RESULTS USING FOUR DIFFERENT DNN ARCHITECTURES.

BP Estimation Accuracy on Testing Set (N=5417)

Model Type SBP DBP

R ME±SD (mmHg) RMSE (mmHg) R ME±SD (mmHg) RMSE (mmHg)

Modified LeNet-5 0.944 0.184±7.457 7.458 0.906 0.343±4.065 4.079

Modified EEG CNN, 5×5 kernel 0.940 0.173±7.709 7.711 0.889 0.144±4.409 4.412

Modified EEG CNN, 3×3 kernel 0.924 0.058±8.608 8.608 0.878 0.124±4.599 4.601

Fully connected MLP 0.923 -0.510±8.695 8.710 0.869 0.237±4.777 4.783

3) Fully-connected multi-layer perceptron (MLP): We
also tested the performance of MLP on the BP estimation
task, which is simply the dense layers after the convolutional
layers of the CNNs described above, taking the flattened VG
images directly as input. The idea is to use the performance
of MLP as a baseline reference to see how well the convolu-
tional filters in the previous 3 CNN settings were extracting
features from VG images.

III. RESULTS AND DISCUSSIONS

For each of the four DNN architectures, 70%, 15% and
15% of the data were used for training, validating and
testing, respectively. The regression performance of each
model is summarized in Table I. The best BP estimation
accuracy comes from the modified LeNet-5 model, with an
error performance of 0.184 ± 7.457 mmHg for SBP, and
0.343± 4.065 mmHg for DBP. In terms of error deviation
and RMSE, the modified EEG classification network with
5 × 5 kernel has close but inferior accuracy compared to
the modified LeNet-5. Meanwhile, the EEG network with
3×3 kernel achieves a similar accuracy with the MLP, both
being much inferior to the two CNNs with 5 × 5 kernel,
which indicates a clear advantage of using 5×5 kernel for
extracting features from VG.

Under the optimal setting using the modified LeNet-5
model, our SBP and DBP performances are within the
limits of the American National Standards of the Association

TABLE II
BP ESTIMATION ACCURACY OF THE BEST PERFORMING MODEL

(MODIFIED LENET-5) COMPARED TO THE BHS PROTOCOL. BOTH THE

SBP AND THE DBP ESTIMATION ACCURACY RANK GRADE A.

Item Percentage
≤ 5 mmHg ≤ 10 mmHg ≤ 15 mmHg

SBP 69.17% 88.94% 95.05%
DBP 87.85% 97.12% 98.86%

Grade A 60% 85% 95%
Grade B 50% 75% 90%
Grade C 40% 65% 85%

for the Advancement of Medical Instrumentation (AAMI)
[20], where the maximum acceptable error is 5±8 mmHg.
The comparison of our results to the BHS protocol [20] is
summarized in Table II. Both SBP and DBP rank grade A.

We summarized 5 other recent data-driven works that used
PPG signal alone for BP estimation in Table III to compare
with our best results produced from the modified LeNet-5
model. As can be seen, our model produces competitive SBP
and DBP estimation accuracy, while offering notable sim-
plicity in terms of being free of manual feature engineering,
using an ordinary image classification network architecture,
and estimating BP with beat-to-beat PPG segments.
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TABLE III
PERFORMANCE COMPARISON OF SBP AND DBP ESTIMATION FROM THE PROPOSED METHOD AND RECENT WORKS. ALL LISTED METHODS USED

ONLY PPG FOR BP ESTIMATION. N/A IMPLIES ”NOT AVAILABLE”.

Citation SBP DBP

ME±SD (mmHg) MAE (mmHg) ME±SD (mmHg) MAE (mmHg)

This work 0.184±7.457 4.673 0.343±4.065 2.476

[21] El Hajj and Kyriacou (2020) N/A±4.74 3.23 N/A±1.96 1.59

[4] Schlesinger et al. (2020) N/A±8.65 7.34 N/A±4.48 3.91

[3] Slapničar et al. (2019) N/A 9.43 N/A 6.88

[22] Xing et al. (2019) 0.45±11.3 N/A 0.31±8.55 N/A

[23] Mousavi et al. (2019) −0.050±8.901 3.97 0.187±4.173 2.43

IV. CONCLUSIONS

In this study, we presented a method for cuff-less BP
monitoring by utilizing VGs created from short PPG seg-
ments and a modified LeNet-5 CNN. Our end-to-end method
is free of manual feature engineering, requires only PPG
signal as input, and can be easily implemented. The model
offers standard-compatible BP estimation accuracy while
requiring only short, beat-to-beat PPG as its input. As such,
the proposed model is a competitive candidate for cuff-less
and continuous BP monitoring.
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