
  

 

Abstract— Muscle synergy is an important method for motor 

intention recognition in rehabilitation exoskeleton control. The 

use of the non-negative matrix factorization (NMF) to extract 

muscle synergy patterns often results in long calculation time 

due to the amount of data, which makes the effectiveness of 

synergy extraction low. In this paper, synergy matrices of the 

complete single-cycle signal while stretching and its segmented 

ones were extracted respectively. By studying the cosine 

similarity variation of synergy matrices between each 

continuous segment and the complete single-cycle EMG signals, 

it is found that there is a "building-stability-weakening" process 

on muscle synergy establishment. It is proposed to extract 

synergy mode with partial data from the "stable" segment, 

rather than using the complete single-cycle one, as similar result 

to single-cycle data synergy extraction could be obtained. The 

calculation time of NMF could be optimized by reducing the 

amount of data and the real-time characteristics of the synergy 

mode extraction could be improved at the same time. It is of 

great significance to use synergy matrix of NMF for motion 

intention recognition and exoskeleton control. 

 

Clinical Relevance— This paper studies the establishment 

process of the synergy mode, and proposes a method for quickly 

extracting the synergy mode, which can improve the 

effectiveness of the recognition of motion intention and is of 

great significance for the real-time control of the rehabilitation 

exoskeleton. 

I. INTRODUCTION 

Rehabilitation robots have brought dawn to the daily 
training and life support of patients with hemiplegia. However, 
when using exoskeleton to assist patients in daily life, how to 
recognize motion intention is still an urgent problem to be 
solved [1]. At present, the intention of movement is mainly 
identified through kinematic signals, dynamic signals and 
bioelectric signals (mainly electromyographic signals). 
Surface Electromyography (sEMG) [2], as a non-invasive 
output form of the neuromuscular system, is a way of motor 
intention recognition that can be used for exoskeleton control. 

Muscle synergy refers to a constant proportional 
relationship involved in co-activation of muscles, and is a 
coded form of the central nervous system activating these 
muscles according to a specific proportion and timing [3]. 
When completing a specific motion task, the central nervous 
system recruits several muscle synergy modes [4] with 
different functions through a linear combination to form a 
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control signal that regulates skeletal muscle coordinated 
contraction in time and space. This signal is transmitted to the 
descending nerve to motor neurons, to activate the muscle 
fibers that could produce muscle activity, which drives joints 
in turn to produce movements [5]. 

Literatures have proved that human movement is based on 
muscle synergy [6]. The central nervous system controls the 
activation time and activation intensity of the corresponding 
muscle synergy mode through the activation coefficient C, and 
realizes the coordinated regulation of muscle contraction 
activity through the weight matrix (W) of different muscles. 
By solving this problem of "blind source separation", the 
activation weight relationship between different muscles (that 
is, the muscle synergy mode W) and the timing adjustment 
coefficient (activation coefficient C) of the synergy mode can 
be used to characterize the sEMG signal feature matrix. This 
is the theoretical basis of using the muscle synergy pattern (W) 
extracted from the sEMG signal to recognize motion intention. 

Principal Component Analysis (PCA) [7], Independent 
Component Analysis (ICA) [8], and Factor Analysis (FA) [9] 
are common blind source separation methods. Because the 
decomposition results have negative values, they are often 
meaningless in practical problems. NMF proposed by Lee and 
Seung [10] is considered close to the natural representation of 
synergies and outperforms PCA and rivals ICA as it is more 
physiologically relevant for EMG signals reflecting well 
behavior of muscles. Currently, NMF decomposition has 
become the main and one of the most popular methods for 
muscle synergy extraction and applications in movement 
analysis. For example, the dependence of joint angles was used 
to control the manipulator through EMG signals, and decoded 
the upper limb movement by training a mathematical model 
[11].  

While, for specified motion tasks, it is usually necessary to 
use complete single-cycle data to obtain the muscle synergy 
mode through NMF method. The amount of the single-cycle 
data would lead to longer calculation time, and limitation on 
the real-time properties of motion intention recognition and 
exoskeleton control. The purpose of this article is to explore 
the establishment process of the muscle synergy mode in a 
single movement, and explore a way to use partial data in the 
"stable" segment to obtain the synergy mode similar to the 
result of the complete single-cycle data, so as to reduce the 
amount of data needed for NMF, and finally reduce the 
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calculation time. On the premise of ensuring effectiveness, the 
real-time property of synergy extraction is improved. 

II. METHODS 

A. Participants and Procedures 

Eight college students (four males, four females; aged 
25±4.6 years old) were recruited for this study. All subjects 
were right-handed, with no neurological diseases or motor 
impairment. Each participant signed an informed consent in 
compliance with experimental protocols approved by the 
Ethics Committee of Chongqing University Cancer Hospital. 

Participants sat on the bench with their backs kept upright, 
and their arms were naturally drooping and relaxed as the 
initial state. A baseball is placed at a distance of 650 mm in 
front of the subject, 45 degrees to the left, and 1300 mm above 
the ground to indicate the target position. Participants first 
stretched to grasp the baseball at the target position by using 
their right arm; after reaching the target position, they moved 
the hand to the position of one punch away from the body at 
the height of the heart in the middle of the chest, and finally 
restored the arm to the original position of natural droop. The 
whole process lasted 2 s and was repeated 20 times. 

B. EMG Acquisition 

Biceps Brachii (BB), Triceps Brachii (TB), Medial Deltoid 
(MD), Musculus Brachioradialis (MB), Anterior Deltoid (AD), 
Posterior Deltoid (PD), Pectoralis Major (PM) and Trapezius 
(TP) were the eight muscles mainly used to perform stretching 
movement in space. These muscles were labeled sequentially 
from 1 to 8. A surface EMG system (ME6000, Mega 
Electronics Ltd, Finland) was used to record the sEMG signals 
of the eight muscles while they performing the motion. Before 
data collection, the skin was shaved and wiped with alcohol, 
and the surface electromyography patch electrodes were fixed 
to the skin surface using an elastic gauze. During recording, 
the system bandwidth was set to 15-500 Hz and the sampling 
rate was 1 kHz. 

C. Muscle Synergy Extraction 

Data were processed offline in MATLAB 2016b. 
Continuous EMG signals were first filtered by 20-500Hz 
band-pass filter and 50Hz notch filter to remove signal noise 
and power frequency interference, and then obtained the EMG 
envelope with a 3Hz low-pass filter. Twenty cycles of EMG 
envelopes were captured by setting thresholds. Each cycle of 
the envelopes were normalized to 1000 for further analysis. 

Based on the hypothesis of the muscle synergy control 
model, this paper used NMF to extract the muscle synergy of 
stretching. The formula of NMF is as follows, where W is the 
weight matrix, which represents the ratio of the contribution of 
each muscle, and C is the coefficient matrix, which represents 
the modulation curve of the corresponding weight matrix over 
time. 

𝑉𝑚×𝑛 ≈ 𝑊𝑚×𝑟 × 𝐶𝑟×𝑚                           (1) 

The number of muscle synergy used for reconstruction is 
determined by VAF, and its formula is as follows. In general, 
the number of synergy depends on the change rate of VAF as 
the number of synergy increases, as well as the values of the 
overall VAF and the single muscle VAF (musVAF). 

𝑉𝐴𝐹 = 1 −
∑ (𝑉−𝑉𝑟)𝑖,𝑗

2
𝑖,𝑗

∑ 𝑉𝑖,𝑗
2

𝑖,𝑗


Where 𝑉 is the original matrix and 𝑉𝑟  is the reconstruction 
matrix. The larger the VAF, the closer the reconstruction 
matrix is to the original matrix. 

D. Research on the establishment process of synergy 

In this paper, we assumed that for a single action, there 
would be an establishment process of the synergy matrix. In 
order to explore the establishment process, we calculated the 
Cosine Similarity between the continuous segmented signals 
and its corresponding single-cycle signal to evaluate the 
synergy pattern establishment process. Common similarity 
calculation methods include Euclidean Metric, Pearson 
Correlation Coefficient, Cosine Similarity and so on. As the 
Cosine Similarity uses the cosine value of the angle between 
the two vectors in the vector space to measure the difference 
between the two individuals, we chose the Cosine Similarity 
to discuss the establishment process of synergy models. 
Specifically, the W matrices calculated according to NMF 
were regarded as vectors, and the similarity between two W 
matrices could be measured by using the Cosine Similarity. 
The formula for calculating is as follows: 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
∑ 𝐴𝑖×𝐵𝑖

𝑛
𝑖=1

√∑ (𝐴𝑖)2𝑛
𝑖=1 ×√∑ (𝐵𝑖)2𝑛

𝑖=1

                     (3) 

Where 𝐴𝑖  and 𝐵𝑖  represent the components of the vectors 
 𝐴 and 𝐵, respectively. 

The repeatability of synergy matrix of the same movement 
is the basis for the recognition of motion intention by using the 
synergy matrix. We calculated the similarity of W between 
adjacent single-cycle actions to verify the repeatability of the 
same action by the same subject and ensure the effectiveness 
of the obtained synergy matrix for intention recognition. 

In order to study the establishment process of synergy  
mode, we first calculated the NMF of the segmented signals 
and the corresponding single-period signal, and then 
calculated the Cosine Similarity between the matrices W of 
each segment and the single-period. After that, the synergy 
model establishment process was studied based on the degree 
of similarity between the segmented and single-period. 

III. RESULTS AND DISCUSSION 

A.  Does the continuous single-cycle motion synergy 

matrices have similarities? 

Figure 1 shows the synergy matrices of stretching 
movement when the number of synergy was 1 and 3. The 
horizontal axis represented eight measured muscles, and the 
vertical axis represented the contribution of the muscles shown 
in the horizontal axis in the stretching movement.  
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Figure 1.  Synergy matrix of stretching movement. 

Synergy 1 in the first row represented the synergy matrix 
when synergy number was chosen to be 1. Synergy 1 to 
synergy 3 in the second row showed the low-order to high-
order synergy matrices extracted when the number of 
synergies was chosen to be 3. 

 According to the figure above, it can be seen that the  
synergy matrix when the number of synergy was 1 has smaller 
variance and better consistency than the case when number of 
synergy was 3.  The results showed that BB, TB, MD AD 
played the major roles. BB and TB corresponded to elbow 
flexion, elbow  hyperextension, respectively. AD 
corresponded to shoulder flexion and internal rotation, which 
was consistent with the muscle theory involved in the upper 
left extension discussed in this paper. 

Then, we calculated the Cosine Similarity between 
adjacent single-cycle synergy matrices to verify whether the 
subjects have sufficient similarity to the motion synergy 
matrix W. 

According to the NMF result of the single-cycle EMG 
signal envelope, it was known that when the change rate of 
overall VAF was less than 1%, the overall VAF was large than 
98%, and the minimum musVAF was large than 91%, then the 
number of synergy was best to be 3. In addition, when the 
number of synergy was 1, the overall VAF was greater than 
81.03%, and the minimum musVAF was greater than 74.15%. 

Previous studies have indicated that low-order synergy 
represents the basic motion mode, and high-order synergy 
represents the fine motion mode [12]. As this paper mainly 
studied the establishment process of the synergy matrix for 
motion intent recognition, rather than evaluating the 
reconstruction results, we mainly discussed the establishment 
process of the synergy mode by calculating the Cosine 
Similarity between the low-order synergy matrices when the 
number of synergy was chosen to be 1 and 3.  

Figure 2 and Figure 3 show the Cosine Similarity between 
adjacent single periods of eight subjects when the number of 
synergy was 1 and 3, respectively. Among which the lines of 
blue, red, and yellow represented the results of low-order 
synergy matrix to high-order synergy matrix, in the order of 
synergy 1, synergy 2 and synergy 3. 

From the results below, it can be seen that with the increase 
of the number of synergy, the similarity during the adjacent 
single-cycles decreased. And with the synergy order 
increasing, lower-order synergy showed higher Cosine 
Similarities than the higher-order ones.  

Figure 2.  Single-cycle Cosine Similarity when the number of synergy 

was 1. 

Figure 3.  Single-cycle Cosine Similarity when the number of synergy 
was 3. Where blue, red, and yellow corresponded to synergy 1, 

synergy 2, synergy 3. 

 

From the above results, it can be seen that with the increase 
of the number of synergy, the similarity during the adjacent 
single-cycles decreased. And with the synergy order 
increasing, lower-order synergy showed higher Cosine 
Similarities than the higher-order ones.  

B. Discussion on similarity between each different segment 

and the corresponding single-cycle 

The standardized single-cycle EMG envelope signal was 
divided into 10 segments, and the NMF was calculated for 
each single-cycle and segmented EMG envelopes respectively. 

For the calculation results of the single-cycle signal NMF, 
when the overall VAF change rate was less than 1%, the 
number of synergy should be selected to be 3. For the 
calculation results of the single-cycle segmented signal NMF, 
when the overall VAF change rate was less than 1%, the 
number of synergy should be 1-2. It can be seen that under the 
same condition of VAF, the number of synergy required by a 
segmented signal is less than that of a single-cycle one. 

Figure 4 and Figure 5 shows the Cosine Similarity between 
each segmented signal and the single-cycle one when the 
number of synergy was 1 and 3, respectively. 

Here, rows 1 to 8 corresponded to subjects 1 to 8, the 

abscissa corresponded to each consecutive 20 cycles of 

each movement. As each cycle was divided into 10 

segments, there was a total of 200 coordinate points in each 

row; the ordinate showed the Cosine Similarity value 

between segmented signals and the single-cycle one. 
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Figure 4.  Cosine Similarity between segmented signals and the 

single-cycle signal when the number of synergy was 1. 

 

Figure 5.  Cosine Similarity between segmented signals and the 

single-cycle signal when the number of synergy was 3. Where blue, 
red, and yellow corresponded to synergy 1, synergy 2, synergy 3. 

From the above results, it can be seen that when the number 
of synergy was 1, the cosine similarity value of the continuous 
segment and the single-cycle synergy matrix W showed a 
change of "establishment-steady-weakness", and this change 
showed better periodicity with the repetition of single-cycle 
actions. 

When the number of synergy was 3, the cosine similarity 
results of each segment and single-cycle data showed a certain 
periodicity in the low-order synergy, but showed no obvious 
periodicity with large fluctuations in the high-order synergy. It 
may be caused by the reason that the low-order synergy 
represents the basic movement mode and has better 
consistency, while the fine movement represented by the high-
order synergy often brings in the difference caused by the 
movement. 

All in all, the synergy of a single movement has a process 
of "establishing-steady-weakening". Using the partial signals 
of the "steady" section can approximately obtain the synergy 
information as the complete single-cycle data. This result is of 
great significance for compressing the time for synergy 
extraction by NMF. In addition, by comparing the Cosine 
Similarity of the low-order synergy when the number of 
synergy was 1 and the number of synergy was 3, it is found 
that the former has better periodic performance and more 
stable changes. This may reveal that the lower order of the 
synergy, the more obvious the establishment process of a 
synergy, and the better the accuracy of using partial segmented 
data to approximately replace the complete single-cycle data. 

IV. CONCLUSION 

This paper verified the hypothesis of the existence of the 
establishment process of muscle synergy. It is expected to 
extract muscle synergies by NMF from the initial part of the 
steady segment of the single-cycle to obtain results 
approximate with the that of the complete single-cycle. By 
reducing the amount of data calculated by NMF, the extraction 
time of synergy mode is reduced. It is expected that under the 
premise of ensuring effectiveness, improving the real-time 
performance of motion intent recognition using NMF is of 
great significance for real-time control of exoskeleton based 
on surface electromyography. 
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