
  

  

Abstract— Modeling the rich, dynamic spatiotemporal 
variations captured by human brain functional magnetic 
resonance imaging (fMRI) data is a complicated task. Analysis 
at the brain's regional and connection levels provides more 
straightforward biological interpretation for fMRI data and has 
been instrumental in characterizing the brain thus far. Here we 
hypothesize that spatiotemporal learning directly in the four-
dimensional (4D) fMRI voxel-time space could result in 
enhanced discriminative brain representations compared to 
widely used, pre-engineered fMRI temporal transformations, 
and brain regional and connection-level fMRI features. 
Motivated by this, we extend our recently reported structural 
MRI (sMRI) deep learning (DL) pipeline to additionally capture 
temporal variations, training the proposed 4D DL model end-to-
end on preprocessed fMRI data. Results validate that the 
complex non-linear functions of the used deep spatiotemporal 
approach generate discriminative encodings for the studied 
learning task, outperforming both standard machine learning 
(SML) and DL methods on the widely used fMRI 
voxel/region/connection features, except the relatively simplistic 
measure of central tendency - the temporal mean of the fMRI 
data. Additionally, we identify the fMRI features for which DL 
significantly outperformed SML methods for voxel-level fMRI 
features. Overall, our results support the efficiency and potential 
of DL models trainable at the voxel level fMRI data and 
highlight the importance of developing auxiliary tools to 
facilitate interpretation of such flexible models. 

I. INTRODUCTION 

Brain function is assumed to be spatially segregated, i.e., 
different aspects of function tend to be linked to different brain 
sites or different combinations of brain networks. Blood 
oxygenation level dependent (BOLD) functional magnetic 
resonance imaging (fMRI) assesses brain function by 
capturing regional, temporal changes due to the hemodynamic 
and metabolic sequelae to underlying elevated neuronal 
activity. To understand brain function via the fMRI modality, 
it is vitally important to thoroughly evaluate the variations 
captured by the data over both space and time.  

Analysis at the brain's regional and connection levels 
facilitates biological interpretation of fMRI data and has been 
instrumental in characterizing the brain thus far. Previous 
work in the field has typically reduced the fMRI data's 
dimensionality in several unique ways in space and time. 
Region of interest (ROI) or atlas-based approaches, as well as 
data-driven parcellation methods such as group independent 
component analysis (gICA), are often used to reduce the fMRI 
data in space and discover task-discriminative information at 
the brain region level. Such decomposition allows identifying 
a set of brain components (i.e., spatial clusters of brain voxels) 
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and associated activity time-courses (ICA-TCs). 
Subsequently, simplistic pairwise statistical measures of 
synchronous activation/de-activation (e.g., Pearson’s 
correlation, coherence, mutual information, etc.), also termed 
as functional connectivity (FC) measures, can be assessed for 
the estimated ICA-TCs at a static (sFC) or time-
varying/dynamic (dFC) scale. Likewise, several temporal 
transformations such as the amplitude of low-frequency 
fluctuations (ALFF), the fractional amplitude of low-
frequency fluctuations (fALFF), Kendall's coefficient of 
concordance Regional Homogeneity (KccReHo), voxel-
mirrored homotopic connectivity (VMHC), degree centrality 
(DC), Percent Amplitude of fluctuation (PerAF), etc. have 
been proposed to reduce the data in time while preserving the 
voxel dimensionality.  

Compared to the above-mentioned valuable fMRI features, 
modeling the rich, dynamic spatiotemporal variations to 
identify biomarkers directly from the four-dimensional (4D) 
fMRI space is perhaps an even more complicated, 
computationally demanding task. One potential way to explore 
this objective is by leveraging the flexibility of deep learning 
(DL) models, as these have already shown great promise in 
diverse medical imaging and genomic data applications over 
the last few years [1-6]. However, most DL brain imaging 
studies work with pre-engineered features (i.e., summary 
measures region or connection level), thus depriving DL of its 
fundamental advantage – representation learning from raw or 
minimally preprocessed voxel (i.e., input) space. 

Our recent work [7] demonstrates, on multiple learning 
tasks on structural MRI (sMRI) data, that if trained following 
prevalent DL practices, DL methods have the potential to scale 
particularly well and substantially improve compared to SML 
methods. Specifically, we observed that our three-dimensional 
(3D) CNN-based DL model, trained end-to-end on gray matter 
maps (i.e., directly in the voxel (3D) space), generated superior 
brain representations to outperform standard machine learning 
(SML). Following that, here we hypothesize the same may 
hold true for BOLD fMRI data – that spatiotemporal learning 
directly in the 4D fMRI voxel-space could discover enriched 
discriminative brain representations compared to the widely 
used, pre-engineered fMRI temporal transformations in 3D 
space or ICA-based features. 

To test the feasibility and efficacy of spatiotemporal 
learning on fMRI data, we develop a sample 4D DL model 
(referred to as the 4DStL model) by extending our previous 
DL pipeline [7] with an extra convolutional layer upfront to 
capture temporal variation in an end-to-end manner. 
Specifically, we use 1x1x1 kernels in the added convolutional 
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layer to identify temporal descriptors without changing the 
following convolutional layers' receptive field. This step 
reduces the timepoint dimension in the input tensor to a 
predefined number of outputs channels, while end-to-end 
training upholds optimal weight estimation. We profile this 
comparison on the age regression learning task, wherein the 
objective is to minimize the mean absolute error (MAE) 
between the actual and the predicted age, a popular proxy 
benchmark for evaluating other scientifically captivating 
questions, e.g., cognitive function, mental disorders. Figure 1 
describes the overview of the study design. 

 
Figure 1: Study Workflow. The figure describes the overview of the study 
design. This work compares the performance of (a) several temporal 
transformations on fMRI data, group ICA time-courses, and static functional 
connectivity for a sample learning/regression task using a range of SML and 
DL methods. 

II. MATERIALS AND METHODS 

A. Data 
This benchmark was established on fMRI images (n = 

12,314) from unaffected subjects (i.e., those who had no 
diagnosed or self-reported mental illnesses based on 22,392 
subjects' fMRI data available as of 7 April 2019) from the UK 
Biobank repository. The scientific study protocol of the UK 
Biobank is approved by the Ethics and Governance Council. 
Written informed consent was obtained from all subjects 
participating in the UK Biobank study. 

The UK Biobank study [8] used a Siemens Skyra 3T 
running VD12A SP4 scanner with a standard Siemens 32-
channel RF receive coil. The gradient-echo echo-planar 
imaging (GE-EPI) data parameters included - slice acquisition: 
multislice (multiband) acceleration, phase-encoding direction: 
AP (anterior-posterior), resolution: 2.4x2.4x2.4 mm, field-of-
view: 88x88x64 matrix, duration: 6 minutes with a TR of 
0.735 s and TE of 39 ms (a total of 490 timepoints), and GE-
EPI: x8 multislice acceleration, no iPAT, flip angle: 52°.  

B. fMRI Data Preprocessing 
The UK Biobank fMRI data minimally preprocessed via 

the Melodic pipeline [8] is used in this work. This 
preprocessing pipeline featured motion-correction using MC-
FLIRT, grand-mean intensity normalization of the entire 4D 
dataset by a single multiplicative factor, high-pass temporal 
filtering (Gaussian-weighted least-squares straight-line fitting, 
with sigma = 50.0s), EPI and GDC unwarping, and removal of 
structured artefacts by ICA+FIX processing. The data was 
further registered to the MNI EPI template using FMRIB's 
Linear Image Registration Tool (FLIRT) followed by 
normalization to the SMP12 old normalization module and 
smoothed using a Gaussian kernel with FWHM = 6mm. The 
preprocessed fMRI maps used for each of the 12314 subjects 
included 490 volumes of 53 x 63 x 52 voxels. 

C. Comparative fMRI Feature Extraction 
We estimated several temporal transformations on fMRI 

data such as ICA-TC, sFC, ALFF, fALFF, KccReho, VMHC, 
DC, and PerAF in this study, moderately motivated by 
previous work [7, 9, 10]. The preprocessed fMRI data were 
decomposed using spatially-constrained group ICA using the 
Neuromark template as reference maps [11] (n=53 brain 
regions) to estimate the group-ICA time-courses (ICA-TCs). 
Subsequently, the sFC features (n=53C2=1378 brain 
connections) were computed as pairwise Pearson’s correlation 
coefficients (unthresholded) between the ICA-TCs. The 
performance of all fMRI features was measured by the SML 
and DL methods outlined in Section II-E. Additionally, 
relatively simplistic measures of central tendency (e.g., the 
temporal mean of fMRI data – TMF) and dispersion (e.g., 
temporal standard deviation – TSF) were also computed, and 
their combination stacked in the channel dimension of the 
input tensor (TMSF) was also evaluated motivated by previous 
work [12]. Feature extraction is an indispensable prerequisite 
to eliminate redundant features and boost the performance of 
the SML methods. Therefore, similar to our previous work 
[12], we reduced all of these voxel-level features (i.e., all 
except sFC) to a lower dimensionality (n=1000) with three 
dimensionality reduction methods - Gaussian random 
projection (GRP), recursive feature elimination (RFE), and 
univariate feature selection (UFS). 

D. Spatiotemporal DL Model 
Notably, experimenting with the fast TR (0.735s) whole-

brain UK Biobank data corresponds to training a high number 
of 3D volumes (n = 490), thus constituting a highly 
computationally demanding task even for a moderate batch 
size (e.g., n = 16 subjects). To alleviate this problem, we 
smoothed the fMRI dataset using piecewise aggregate 
approximation (PAA) of the fMRI time series with a window 
size of 15 time points, thus effectively reducing the data 
temporally (from n = 490 to n = 32 time samples), but still 
retaining appreciable temporal information. We train the 
4DStL model on this smoothed data to capture the temporal 
variations using 1x1x1 kernels in its foremost convolutional 
layer. This step allowed us to identify temporal descriptors to 
a predefined number of output channels (n=3) without 
changing the following convolutional layers' receptive field, 
thus allowing reuse of our proven 3D DL model [7] for 
spatiotemporal learning via the proposed 4DStL model. 
Therefore, this model employs a 3C-64C-128C-192C-192C-
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128C configuration of convolutional layers, wherein the 
numbers signify the number of channels/filters for a given 
convolutional layer. 

E. Comparative SML and 3D DL Models 
We evaluated all fMRI features using three SML models - 

elastic-net (EN), kernel ridge regression (KRR), and random 
forest (RF) ensemble learning, as well as a suitable DL model 
to establish comparative baselines for the 4DStL model. 
Specifically, we used our recent 3D-CNN DL model [7] for 
learning all voxel-level temporal transformations, a two-layer 
bi-directional long short-term memory (LSTM) model [13, 
14] for ICA-TCs and a graph-CNN model [15, 16] for sFC 
features (modified version of BrainNetCNN implementation 
in [9]). The three SML and DL models were implemented 
with the scikit-learn python machine learning library using 
our custom code [17]. Furthermore, the 3D DL model used in 
this work is a 3D-CNN variant of the AlexNet architecture 
[18] (64C-128C-192C-192C-128C) adapted to a deep vanilla 
regressor [17] by reducing the output nodes in the final fully 
connect layer to one. 

F. Cross-validation and Hyperparameter-tuning 
All analysis in this work was evaluated in a standard, 

repeated (n = 5), stratified cross-validation (CV) procedure 
and using the same training/validation/test data partitions. 
Hyperparameter tuning was employed for SML models 
through a grid parameter search with the hypopt python 
package. For the KRR method, the hyperparameter grids were 
spanned for the kernel mapping function (linear/radial-basis-
function/polynomial/sigmoidal), regularization strength 
(alpha in the [10-3, 10-2, 10-1, 1] range), and the gamma 
parameter in kernel mapping functions (10 values sampled on 
a logarithm scale for a range of powers of 10 from [−4, 2]). For 
the RF method, the number of trees in the forest (5 values 
sampled uniformly in the [100, 200] range), the maximum 
number of features considered at each split (chosen as square 
root or logarithm to the base 2 of the number of features), the 
minimum number of samples required to split an internal node 
(2, 5 or 10), the minimum number of samples required to be at 
a leaf node (1, 2, or 4) and the bootstrap flag (on/off) were 
tuned as hyperparameters. For the EN regression method, the 
alpha tuning parameter multiplied to the penalty terms (in the 
[10-1, 10-2, 10-3, 10-4, 10-5, 10-6] range) and convex combination 
penalty parameter (10 values sampled uniformly in the [0,1] 
range) were tuned as hyperparameters.  

Furthermore, for the 3D CNN DL model, we used a batch 
size of 16 and retained the learning rate (10-2) as validated in 
the [10-1, 10-2, 10-3, 10-4, 10-5, 10-6] range from the 
hyperparameter tuning stage of our previous work. A learning 
rate scheduler callback was employed to reduce the learning 
rate by a factor of 0.5 on plateauing of the validation accuracy 
metric, and the MSE loss was used. Early stopping with a 
patience level of 40 epochs was implemented on the validation 
MAE measure to reduce overfitting and achieve lower 
generalization error in the testing phase. The MAE metric was 
chosen for early stopping to optimize test MAE, thus allowing 
for a direct comparison to previous work. The 2-layer 
bidirectional LSTM model and graph-CNN models used the 
Adam optimizer and tuned for the learning rate (in the [5x10-

2, 10-2, 5x10-3, 10-3, 10-4] range) and batch size (16, 32, 64, 
128). Additionally, for the LSTM model, the hidden layer size 
parameters were tuned (32, 64, 128, 256). Training and testing 
routines for the DL architectures were implemented on an 
NVIDIA CUDA parallel computing platform using GPU 
accelerated NVIDIA CUDA toolkit (cudatoolkit), CUDA 
Deep Neural Network (cudnn), and Pytorch tensor libraries. 

III. RESULTS 

A. Performance of DL methods  
The MAE, correlation and coefficient of determination 

(R2) regression scores between the actual and the predicted 
age were estimated for all features and models. Figure 2 
illustrates the advantage of DL as compared to SML on the age 
regression task on fMRI data. The 4D spatiotemporal learning 
model (4DStL) reported a MAE of 3.54 (years), correlation (r) 
value of 0.81 and R2 value of 0.65, a significant improvement 
over ICA-TC, sFC and all temporal transformations except the 
temporal mean of fMRI data (TMF: MAE = 3.48, r = 0.82, R2 
= 0.66), and the case when this measure was stacked with the 
temporal standard deviation (TMSF: MAE = 3.45, r = 0.82, 
R2 = 0.66). Additionally, the 3D DL model resulted in the least 
MAE for all other temporal transformations (MAEALFF = 4.36, 
MAEfALFF = 4.52, MAEDC = 5.00, MAEKccReHo = 4.58, 
MAEVMHC = 4.78, MAETSF = 4.45, MAEVMHC = 4.78) as well 
as ICA-TC (MAEICA-TC = 4.66) and sFC features (MAESFC = 
4.8), as compared to the performance of all three SML 
methods for these features respectively. Notably, the 
performance difference between SML and DL methods was 
significant (p < 0.005) only for the TMF, TSF, TMSF, ALFF, 
fALFF, PerAF and ICA-TC features.  

 
Figure 2: Performance comparison on the age regression task. Spatiotemporal 
deep learning was implemented using the 4DStL method directly on the 4D 
fMRI data. To establish a comparative baseline, different temporal 
transformations and features (ALFF, fALFF, DC, KccReHo, VMHC, PerAF, 
TMF, TMS, TMSF, ICA-TC and sFC) were computed from the preprocessed 
fMRI data. The performance of all methods and features for the entire range 
of SML and DL methods was cross-validated using the MAE, correlation (r) 
and coefficient of determination (R2) regression metrics. The 4DStL model 
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on preprocessed fMRI data and 3D DL model on the TMF feature resulted in 
the smallest MAE on held-out test data.   

B. Performance trends in SML models 
For all fMRI features tested with SML methods, TMF 

reported the best performance when using the KR SML 
method for GRP features (MAE = 3.78 years, r = 0.78, R2 = 
0.60), followed by the EN SML method for GRP features for 
the same temporal transformation (MAE = 3.91 years, r = 
0.75, R2 = 0.57). Overall, when comparing the performance of 
the SML methods for all temporal transformations, EN and 
KR performed consistently the best for all the GRP and RFE 
features across all metrics, thereby also suggesting lower 
efficacy and value of UFS for dimensionality reduction and the 
RF method for regression tasks on such data. 

 
Figure 3: Non-linear embeddings of the representations encoded by the 4D 
4DStL (deep spatiotemporal) model on preprocessed fMRI data (Top) and 
the 3D DL model on TMF features (Bottom). The task-discriminative fMRI 
data representations encoded by both models span comprehensible projection 
spectra.  

C. 4DStL Model: Embeddings & Network Weights 
If the DL models indeed learn representations that encode 

the brain rationally, the encodings in the deeper layers (e.g., 
the last convolutional layer) must illustrate comprehensible 
projection spectra per the undertaken learning task. Figure 3 
illustrates the non-linear embeddings of the fMRI data 
representations encoded by the 4DStL model on preprocessed 
fMRI data (top panel) and the 3D DL model on TMF features 
(bottom panel) as estimated using the t-distributed stochastic 
neighbor embedding (tSNE) framework. Evidently, subjects 
are seen ordered in increasing age from one end of the 
spectrum to the other except for some outliers, thereby 
confirming that these task-discriminative representations are 
consistently meaningful for both best-performing cases. 

Additionally, Figure 4 introspects the filter weights of the 
first convolutional layer of the 4D spatiotemporal DL model. 
In this figure, the columns (rows) represent the 32 (3) input 
(output) channels. The non-uniform distribution of filter 
weights across the different output time channels of this 
model implies that the model was not trivially trained and that 
this pipeline may potentially discover temporal information 
presented by the fMRI data. 

 
Figure 4: Distinct filter weights are visualized for the first convolutional layer 
of the 4DStL (deep spatiotemporal) model. This non-uniform distribution 
across the time channels suggests the model can discover temporal 
information in the fMRI data. 

IV. DISCUSSION 

Our work systematically compares the performance of a 
wide range of temporal fMRI features evaluated using several 
SML and DL methods to an end-to-end deep spatiotemporal 
learning model directly on 4D fMRI data. We found that the 
used 4DStL model significantly outperformed all SML and 
DL methods compared to fMRI features except the fMRI 
data's temporal mean (TMF). This observation suggests that 
the undertaken 4DStL approach can learn vital spatiotemporal 
information and critically preserves voxel-wise 
interrelationships to an equitable extent similar to TMF 
features. Critically, the matched performance of TMF features 
doesn’t necessarily imply a lack of meaningful temporal 
information at voxel level in the fMRI modality as there are 
several ways the tested 4DStL model may be tuned and 
perhaps numerous other flexible models that could be adapted 
to learn the temporal information in the fMRI data as 
discussed in the next paragraph. Instead, this particular 
observation further confirms the dominance of 
spatial/anatomical interrelationships in driving the 
undertaken learning task (i.e., age regression) and only 
suggests retaining that information may be more critical than 
the temporal dimension of this data on this learning task.  

We also note that the used 4DStL model is potentially 
limited in a few ways, including (a) dimensionality reduction 
of the fMRI data in the time dimension (i.e., from 490 to 32) 
via the PAA approach, (b) reducing the data time dimension 
abruptly (i.e., from 32 to 3) using a 1x1x1 kernel in the first 
3D convolutional layer and (c) deploying only one such layer 
as compared to reducing the data in time gradually with the 
use of multiple such layers. Exploring the above-mentioned 
potential limitations and confirming the trends suggested by 
this study on other learning tasks comprise exciting topics for 
future work in the domain. Nevertheless, it is evident from the 
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current results that the 4DStL model may also allow 
introspection in the time-domain, an attribute that is 
fundamental for explaining the fMRI data at all data stratum 
(i.e., the voxel, region, and connection levels). 

Finally, while the 4DStL framework tested for this 
exploratory analysis is based on a CNN model, which is 
inarguably a more established and supervised DL model, 
investigating other flexible supervised/semi-
supervised/unsupervised DL models, or perhaps rational 
combinations like CNN and an RNN (e.g., to learn the spatial 
and temporal properties of the data sequentially in an end-to-
end manner) could be similarly interesting. We presume 
research in this direction should target the identification of 
deep spatiotemporal models that source a vibrant blend of 
excellent representational learning and precise biological 
interpretability for fMRI data.  

V. CONCLUSION 
The results in this work support the efficiency and potential 

of DL models trainable end-to-end on preprocessed fMRI data 
and highlight the importance of developing auxiliary tools to 
explain such flexible models. Overall, these observations 
motivate future work in the field to create and establish 
flexible DL models for spatiotemporal learning directly in the 
4D space, ultimately aimed toward facilitating rich 
characterizations of the fMRI modality to explain vital 
neuroimaging objectives at all data stratum (i.e., the voxel, 
region, and connection levels).  
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