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Abstract— Pneumonia is a common complication associated
with COVID-19 infections. Unlike common versions of pneu-
monia that spread quickly through large lung regions, COVID-
19 related pneumonia starts in small localized pockets before
spreading over the course of several days. This makes the infec-
tion more resilient and with a high probability of developing
acute respiratory distress syndrome. Because of the peculiar
spread pattern, the use of pulmonary computerized tomography
(CT) scans was key in identifying COVID-19 infections. Identi-
fying uncommon pulmonary diseases could be a strong line of
defense in early detection of new respiratory infection-causing
viruses. In this paper we describe a classification algorithm
based on hyperdimensional computing for the detection of
COVID-19 pneumonia in CT scans. We test our algorithm using
three different datasets. The highest reported accuracy is 95.2%
with an F1 score of 0.90, and all three models had a precision
of 1 (0 false positives).

I. INTRODUCTION

On January 2020, the World Health Organization declared
a global emergency due to a novel coronavirus that had
started in the regions of Wuhan, China and rapidly spread
around the world. Symptoms include fever, headache, loss
of smell, difficulty breathing, among others [1]. During the
early stages of infection, medical experts were specifically
interested in the effects that SARS-CoV-2 (COVID-19) had
in the patient’s lungs. In severe cases, lungs get inflamed,
filled with fluid and debris, causing what is known as pneu-
monia [2]. Because of this, hospitals relied on computerized
tomography (CT) scans [3] and using lower respiratory tract
samples [4] to identify COVID-19 related pneumonia. Ac-
curacy among expert radiologist on differentiating COVID-
related pneumonia from typical pneumonia can vary fell
between 97% and 67% [5].

At the time of writing, various blood and saliva tests
have been developed, but their accuracy has been the focus
of debate. While most tests seem to emphasize sensitivity
over specificity [6], CT scans remain the most accurate way
to confirm symptomatic infections, especially when dealing
with in-hospital settings and with patients with preexisting
lung related conditions [7].

Recent research has focused on applying artificial in-
telligence to the challenge of detecting COVID-19 in CT
scans [8]. The work of Soares, et al. [9] aims to build an
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explainable deep learning network using CT scans collected
from patients across several hospitals in Sao Paulo, Brazil.
They released a dataset containing images from healthy
patients, patients with COVID-19 related pneumonia, and
patients with other pulmonary issues. Similarly, He, et al.
[10] released a dataset containing ct-scans of healthy patients
and patients diagnosed with COVID-19 that were data mined
from other studies. Finally, Rahimzadeh, et. al. [11] released
a dataset of CT scan sequences sourced from a single
hospital, and introduced a deep learning based model to
identify COVID-19 infections. In total, we have access to
three public datasets.

In this paper we describe a hyperdimensional (HD) com-
puting [12] approach for identifying CT scan images as
suspicious of COVID-19 using image classification. We train
and test the models using each of the three datasets. Our
approach achieves up to 95% classification accuracy and
report 0 false positives. We compared our models with those
originally published alongside the datasets and present a
thorough discussion on the advantages and disadvantages of
our approach.

The rest of the paper is organized as follows:
• Methodology explains our HD computing implementa-

tion and justifies decisions made during the design of
the classification model.

• Results describes the resulting accuracy with each of
the CT scans datasets and compares them with the
models described in the original papers that published
the datasets.

• In Discussion we justify our approach and describe its
differences over other approaches.

• Conclusion summarizes our findings.

II. METHODOLOGY

Our algorithm relies on HD computing to encode one gray
scale image sample per CT scan into a hypervector (a very
long vector of numbers). For this work we use vectors with
10 thousand elements. After the data is encoded, we can
compute the distance between hypervectors. The predicted
class for unknown encoded images will be that of the closest
known hypervector. In this section we describe the specific
characteristics of our implementation.

A. HD Computing for Image Classification

This is not the first work that uses HD computing for
image classification [13]–[15]. There different implementa-
tions, but we follow an algorithm very similar to the one
described by Yang, et al. [16]. We use bipolar hypervectors
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(every element has a value of 1 or -1) and encode both the
intensity and the position of every pixel. After obtaining both
hypervectors, we bind them through multiplication. Then we
combine all the pixel hypervectors through majority voting
[12] to generate a single hypervector for the image.

B. Encoding

For creating the hypervectors, we use orthogonal or un-
correlated encoding [13]–[15] to represent the position of
each pixel. We use linear or correlated encoding [17] to
represent the pixel intensity. This means that each pixel has
two hypervectors, which are later combined through majority
voting.

1) Preprocessing: Through the use of image manipulation
tools, we resized the images and normalized their contrast
ratio to remove noise introduced from different sources.
Preprocessing and image filtering is not unusual in machine
learning-based image processing tasks [18]–[20], and com-
monly used for face [21] and object [22] detection.

2) Training: Once all the images are preprocessed, and
the dimensionality (10k) and type (bipolar) of the hypervec-
tors has been set, the training phase proceeds as follows:

1) Identify the magnitude of features. Since all the images
are the same size after processing, then we have 300
by 200 pixels or 60,000 features for datasets 1 [9] and
2 [10], and 512 by 512 (262,144) pixels for dataset 3
[11].

2) For each pixel, encode the position and the intensity
hypervector and bind them.

3) Combine all the pixel hypervectors of a single image
using majority voting.

4) Add all the feature vectors using majority voting.
5) Store the image hypervector keeping record of what

class (healthy or COVID-19) it belongs to.
3) Testing: We separate a subset of the images that are

not part of the training phase. This subset is called the testing
subset and is used to evaluate the model. For this work we
use a 70-30 split, which means that 70% of the images will
be used for training and the remaining 30% will be used
for testing. They all go through the same encoding process
with the only difference that the testing images’ class is set
to that of the closest training hypervector. We then compare
this class with the actual class of the original image and
derive the accuracy of the model in correctly predicting the
testing images.

III. RESULTS

Imaging data from CT scans are generally stored using
the DICOM formatting [23] that contains information such
as patient data. For the three datasets, the images have
been scrubbed of identifying data and extracted as Portable
Network Graphics (PNG) images. Axial CT scans are done
from the perspective of the axial or transverse plane, along
or perpendicular to the median plane. In other words, with
the patient lying on their back, slices are collected starting
from the upper lobe of the lungs (closest to the patient’s
head) towards the lower lobe (closest to the patient’s waist).

Figure 1 shows an image sample for a single patient. Ranges
and slice sizes vary for each patient. We chose to focus on
the mid section with the right major fissure in focus and
the trachea splitting into the main bronchi (b) since this was
fairly consistent among all patients for all datasets.

We built three models, one for each dataset. From dataset
1, we have 80 images from patients with COVID-19 and 46
images from healthy patients. From dataset 2 [10], we have
350 with COVID-19 and 398 without. From dataset 3, we
used one image per patient from all 96 patients with COVID-
19 and randomly sampled 109 healthy patients in order to
keep the dataset balanced. Table I shows the population
distribution for each dataset and Figures 2 and 3 show an
image sample of a healthy and a COVID-19 CT scan image
respectively.

COVID-19 Healthy Total
Dataset 1 80 46 126
Dataset 2 350 398 748
Dataset 3 96 109 205

TABLE I
THIS TABLE SHOWS THE POPULATION DISTRIBUTION FOR EACH OF THE

DATASETS

Model Accuracy Precision Recall F1 score
Model 1 92.8% 1 0.83 0.91
xDNN 97.38% 0.99 0.95 0.97

Model 2 93.7% 1 0.77 0.87
Self-Trans 86% - - 0.85
Model 3 95.2% 1 0.82 0.91

FPN 98.5% 0.73 0.94 0.82

TABLE II
ACCURACY, PRECISION, RECALL AND F1 SCORE FOR OUR MODELS

COMPARED TO THE MODEL USED FOR EACH OF THE PUBLISHED

DATASETS IN THEIR ORIGINAL PAPERS. MODEL 1 WAS USED FOR

DATASET 1, MODEL 2 FOR DATASET 2 AND MODEL 3 FOR DATASET 3.
FPN STANDS FOR FEATURE PYRAMID NETWORK.

A. Comparing to expert radiologists

For the models corresponding to each dataset we derived
the classification accuracy, the precision, recall and F1 score
and compared them to the models used in the original papers
for each dataset. These results are in Table III. It is important
to note that the model originally presented in the work of
Soares, et al. [9] has a data leakage issue where images
where randomly split without separating them per patient.
This means that images from the same patient can appear
in the training and the validation set. All of our models
had a precision of 1 which means that there were no false
positives, the reasoning for this is that the haziness in images
from infected lungs introduces pixel values at specific image
locations that are easily identified by the model. A healthy
and clear lung will have pixel values closer to absolute white
or absolute black (255 or 0 correspondingly) whereas the
haze in infected lungs will have pixel values closer to the
middle of the pixel intensity range.
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Fig. 1. CT scan sample from one patient showing the upper lobe and the trachea in the middle of the image(a), the mid section of the lung showing the
anterior segment in focus and the trachea splitting into the main bronchi (b), the lower lobe section with inferior lobar bronchi (c), and the basal segments
of the lower lobe with the diaphragm starting to appear (d)

Fig. 2. Image from a CT scan of a patient with healthy lungs showing
minimal haziness and clear definition of the arteries

IV. COMPARING TO EXPERT RADIOLOGISTS

The classification performance of the binary classification
model is comparable to the median accuracy values presented
in [5]. However, there are key differences between the two
studies. In [5], CT scans from COVID-19 patients with no
abnormalities were discarded. Additionally, radiologist had
access to the full scan. For the model presented in this
chapter, only one slice is being analyzed and all COVID-19
are included, without discarding non-anomalous images. [11]
observed in a separate experiment that radiologists where

Fig. 3. Image from a CT scan of a patient with COVID-19. The haziness
(as the one found inside the oval) is indicative of pneumonia and the pattern
is consistent with that of patients with a COVID-19 infection.

only 70% accurate in detecting COVID-19 infections in
CT scans. Future research needs to be done to discover an
encoding that is not dependent upon pixel position and that
could be implemented to three-dimensional images.

V. DISCUSSION

HD computing has proven to be an efficient machine
learning approach for many domains, specially those that are
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data constrained [13], [17], [24], [25]. In this work we show
that classification of CT scan images is another use for it,
effectively capturing the pixel patterns observed in CT scans
of lungs with a COVID-19 infection. Our models consistently
achieve over 92% classification accuracy and surpasses deep
learning based models in at least one of the metrics. An
advantage that HD computing has that we don’t discuss in
this paper is that it is computationally efficient [12].

On the other hand, our HD computing models perform
well with little to medium amounts of data. Dataset 1 only
contains 126 images and dataset 2 contains 748. This means
that this approach has both the potential of being used to
detect new unseen anomalies where data is scarce, or scale
and improve as more data is made available. However, there
is still much work to do in order to properly assess this,
in addition to incorporating a full CT scan sequence as a
hypervector, with the option of adding the patient’s data as
well.

For future works we will focus on testing the impact of
data scarcity in identifying anomalous CT scans. This is part
of a greater effort to design tools that will help identify new
respiratory diseases when little data is available in support
of an early detection system.

VI. CONCLUSION

In this paper we describe a hyperdimensional computing
image classification approach to classifying images from
pulmonary CT scans across two classes: Healthy and with
COVID-19 related pneumonia. We test our approach through
three models, each one applied to a different dataset. All the
models achieve over 92% classification accuracy and beat
the state of the art models that were used originally on these
datasets by at least one metric (accuracy, precision, recall
and F1 score). Additionally, none of the models generate any
false negatives and greatly reduce the input dimensionality.
We argue that this approach has the potential of detecting
new pulmonary diseases but also scales well when more data
is made available.

The medical data used in this study was fully de-identified
and ethical committees relevant to each of the referenced
sources provided approval to the original works. For this
paper, we did not perform experimental procedures on hu-
mans and followed the data reuse guidelines provided by the
authors of the original data sources.
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