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Abstract— Brain activation patterns vary according to the
tasks performed by the subject. Neuroimaging techniques
can be used to map the functioning of the cortex to cap-
ture brain activation patterns. Functional near-infrared spec-
troscopy (fNIRS) is a neuroimaging technique increasingly
used for task classification based on brain activation patterns.
fNIRS can be widely used in population studies due to the
technology’s economic,non-invasive, and portable nature. The
multidimensional and complex nature of fNIRS data makes
it ideal for deep learning algorithms for classification. Most
deep learning algorithms need a large amount of data to be
appropriately trained. Generative networks can be used in
such cases where a substantial amount of data is required.
Still, the collection is complex due to various constraints.
Conditional Generative Adversarial Networks (CGAN) can
generate artificial samples of a specific category to improve
the deep learning classifier’s accuracy when the sample size is
insufficient. The proposed system uses an LSTM based CGAN
with an LSTM classifier to enhance the accuracy through data
augmentation. The system can determine whether the subject’s
task is a Left Finger Tap, Right Finger Tap, or Foot Tap
based on the fNIRS data patterns. The authors obtained a task
classification accuracy of 90.2% for the LSTM based GAN
combination.

Clinical relevance— Acquiring medical data present practical
difficulties due to time, money, labor, and economic cost.
The deep learning-based model can better perform medical
image classification than hand-crafted features when dealing
with many data. GAN-based networks can be valuable in the
medical field where collecting extensive data is not feasible.
GAN-generated synthetic data can be used to improve the
classification accuracy of classification systems.

I. INTRODUCTION
Functional near-infrared spectroscopy (fNIRS) is a neu-

roimaging technology for mapping the functioning human
cortex, which uses near-infrared spectroscopy [1]. This map-
ping is done by measurements and images of local brain
changes caused by the modulation of cerebral blood flow
and oxygen metabolism by neural activity[2]. fNIRS is a
non-invasive, repeatable, portable, high temporal resolution,
and economical technology with widespread use. fNIRS
is more suited for the populations and studies for which
other imaging modalities are limited, including infants and
children, procedures involving mobility and interactivity, and
clinical environments[2].

Neuroimaging techniques used such as EEG and fNIRS
have emerged to be the most widely used modalities for
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task classification[3]. EEG and fNIRS are suitable for studies
with population since it is inexpensive and not harmful to
repeated use. Most of the existing task classification systems
use conventional machine learning methods for classification.
The traditional machine learning methods are used frequently
due to their simplicity of implementation. On the drawbacks,
these traditional methods require a significant amount of data
preprocessing and feature extraction. Additionally, traditional
machine learning methods do not fully use complex patterns
of neural signals. The accuracy of the conventional classifiers
depends predominantly on the features selected for training
the model. The extraction and selection of optimal features
can be a challenge with neural signals. The complexity
and multi-dimensionality of fNIRS data make it much more
suitable for deep learning methods.

There are currently some successful deep learning classi-
fiers with neuroimaging modalities such as EEG and fNIRS.
One of the main issues with implementing deep learning-
based classifiers is the insufficient sample size in instances
where collecting data is difficult. Acquiring medical data
present practical difficulties due to time, money, labor, and
economic cost, sometimes resulting in smaller sample sizes.
The models tend to overfit with small sample sizes, create
difficulty generalizing the model, and underperform testing
data. Data augmentation is a method that enables researchers
to increase the diversity of training data available for models
without additional data collection. In the health field, obtain-
ing high-quality labeled data for deep learning algorithms
can be costly and time-consuming; generative networks can
help. One way which can be used for data augmentation with
a deep learning algorithm is known as General Adversarial
Networks(GAN). Researchers have found that data augmen-
tation with GAN networks has improved the classification
accuracy[4]. GAN networks have been used successfully
to generate EEG signals using GAN networks for data
augmentation[5], [6] . However, the most challenging task
of a GAN-based signal is signal verification. Although with
the visual output, it may be easier to verify visually.

The authors propose a classification system based on a
hybrid CGAN-LSTM network to classify images derived
from fNIRS signals. The proposed deep learning system will
not be affected by the relatively smaller number of samples
due to the ability of the CGANs to augment the data. This
proposed system can be used when training a deep learning
classifier with a relatively smaller number of samples. The
proposed system can both generate artificial samples and
classify actual data as well. The proposed system obtained
a classification accuracy of 90.2% and AUROC of 0.95.

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 1043



This proposed system exceeded the accuracy obtained for
the same dataset using the traditional machine learning
classifiers. It was also able to match the performance of the
deep learning classifiers that were used to classify the data
earlier.
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Fig. 1. System Overview

A. System Overview

Several architectures were initially considered to deter-
mine the final configuration of the system design. The final
model was chosen based on the best performance metrics.
Fig.1 illustrates the Overview of the complete system. The
acquired raw fNIRS data were initially preprocessed to re-
move the disturbances. Neural signals have highly correlated
variables that should be removed before being fed into
the model. Therefore dimension reduction techniques were
performed on preprocessed data to remove the highly corre-
lated variables. Afterward, the data is sent to the sequence
preparation phase. The sequences are made according to the
model input parameters. The data set is then divided into
the test and training sets. The training set is sent to the
CGAN model, where artificial sequences are generated for
the three categories. Both real data and CGAN generated
data are used to train the deep learning classifier based on
LSTM. The test set is fed directly to the classifier and used
to determine the performance. Finally, the result is obtained
with the task being classified into Right Hand Tap(RHT),
Left Hand Tap(LHT), or Foot Tap(FT).

B. Data

The data used for the training of the classifier was obtained
from an open database[3]. A more detailed description of
the data can be found in the original publication. Thirty
volunteers participated in this study. The fNIRS data were
recorded by a multichannel fNIRS system consisting of eight
light sources and detectors.

A single trial included an introduction period and a task
period, followed by an inter-trial break. The inter-trial inter-
val was 30 s on average. Out of RHT, LHT, and FT, a specific
task type was displayed randomly, which volunteers were
required to perform. For RHT/LHT tasks, the volunteers
performed unilateral complex finger-tapping at a rate of 2
Hz. For FT, the participants tapped their foot at a 1 Hz rate.

C. Pre-processing Data

The concentration changes of the oxygenated and reduced
hemoglobin (∆HbO/R) were band-pass filtered. This was

done using a zero-order filter implemented by the third-order
Butterworth filter with a 0.01-0.1 Hz passband. Filtering is
of the signal is essential to remove the physiological noises
and DC offset. The ∆HbO/R values were segmented into
epochs ranging from -2 to 28 s relative to the task onset.
Baseline correction was done for each epoch by subtracting
the average value within the reference interval(-1 to 0s).

After the data was preprocessed, the data should be
prepared in sequences before being fed to the model. All
the sequences have the same length and are scaled to [-
1,1] range. Then the data is sent through a kernel principal
component unit to extract the most significant component.
Hence the number of data sequences from each subject was
reduced to 1. This reduction was made to make the GAN
models less complicated. Each sequence had a length of 350.
These sequences were used to train the GAN network and
then for the training of the LSTM based classifier. Although
the GAN-generated data was used to train the network, the
testing was done only on original data.

D. Model

GANs are an innovative way of training a generative
model by framing the problem as a supervised learning prob-
lem using deep learning models. GANs can automatically
discover the pattern in input data. The GAN architecture
was first proposed in the 2014 paper by Ian Goodfellow[7].
GANs can generate new samples that appear to belong to
the original dataset[8].

There are two sub-models in a GAN called the Genera-
tor(G) and Discriminator(D). The generator model is used to
train to generate new examples and the discriminator model
to classify samples real or fake generated[7]. GANs are the
two models behind the training motivation trying to achieve
the Nash equilibrium of Game Theory. A non-cooperative
game solution must be reached between two adversaries to
achieve Nash equilibrium. Each player already knows all the
other player’s strategies. Therefore, no player gains anything
by modifying their strategy[7]. Any function that can be
differentiated can be used as the function for equations of
Generator and Discriminator.

The technique of Conditional GAN(CGAN) has similar-
ities to the GAN network. Both the Generator and Dis-
criminator have conditioned an extra input(y) which can be
auxiliary information. The conditioning can be performed
by feeding into both the Discriminator and Generator as the
additional input layer. In the proposed model, class labels
are considered as the "y" parameter[9]. The cost function for
CGAN is shown in Eq.1. By adding additional information
in a form of a condition, both the generator G and the
discriminator D learn to operate in specific modes.

min
G

max
D

V (G,D) = min
G

max
D

Ex∼pdata [log(D(x|y))]

+Ez∼pz [log(1−D(G(z|y)))]
(1)

The generator model takes a fixed-length random vector as
input and generates a sample in the domain. From a Gaussian
distribution, a random vector is drawn to initiate the gener-
ative process. After training, points in this multidimensional
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vector space will correspond to points in the problem domain
to form a compressed representation of the data distribution.
This vector space is referred to as a latent space. Latent
variables are not directly observable.

The proposed model is based on LSTM units. Most of the
existing GAN models are based on the CNN architecture.
The purely CNN-based architectures are most often used
for image generation. The LSTM based modules are much
more suitable for handling time series data. The LSTM units
can retain the data that can be useful in memorizing the
sequence’s temporal dynamics. Time series generation using
GANs is a challenging task. There are temporal and global
dynamics that the generated sequences should preserve.
Throughout literature, there are not a lot of sequence-based
GANs which were able to converge successfully. Neural
signals-based GANs are even harder to design due to their
complicated design. In this design, only a single channel
of uncorrelated data is used for training the GAN. This
approach can be scaled for a multichannel system. Apart
from the LSTM model, the authors attempted to train a
1D CNN model, which was unsuccessful in converging for
the fNIRS data. In literature, however, there are several
1D models which were successfully trained for sequence
generation, although the verification methods were not well
explored.

The Input for the GAN system was the preprocessed
fNIRS data. For simplicity, only a single channel was chosen.
Yet, there are ways to expand the process to a multi-
channel approach. However, such an approach can increase
the time taken for converging or may not converge at all.
Both generated and actual data were considered for training.
However, for testing, only the actual data was considered.
From the final classifier, the task was determined. The final
classifier was also an LSTM based model, and the authors
attempted to increase the accuracy of the classifier only
through data augmentation.

II. RESULTS

The results for the classifier can be analyzed in several
different stages. In the first step, the results obtained by
the traditional classifiers are analyzed. In the second stage,
the results are analyzed considering the performance of the
LSTM based classifier. In the final phase, with the GAN
network’s data, the classifier’s performance is observed when
the training data is augmented. The main performance pa-
rameters that were considered are classification accuracy and
the Area Under the ROC curve. Further confusion matrices
were also analyzed to find out which classes were easier to
detect.

III. PERFORMANCE EVALUATION AND DISCUSSIONS

In the first step of the study, the traditional classifiers were
used to obtain classification accuracy. The best performing
traditional classifier was the SVM classifier, based on the
data set’s original research. The traditional classifiers require
the feature selection process. The accuracy of the model
greatly depends on the features that are selected. Two deep
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Fig. 2. The comparison between frequency power spectrum generated for
GAN generated data for the first subject

learning models were used, one for classification and the
other for data augmentation. In the second phase, further
analysis was done to determine the data generated through
the data augmentation process. The deep learning classifier
proposed in this study is LSTM-based, which is trained
using the CGAN network’s data. The LSTM classifier, which
was trained using only real data, obtained an accuracy of
78.9%. The maximum accuracy obtained is 90.2%, which
was obtained using the original data augmented with 110%
of generated data. The generated data is given as a percentage
of the original data.

The comparison between frequency power spectrum gen-
erated for GAN generated data for the first subject is shown
in Fig.2. The generated data samples start at 10% of the
original data and increases by 10% each step. The traditional
performance metrics, such as accuracy and AUROC, and the
classification accuracy are calculated for each step. Table II
shows how the classification accuracy and average AUROC
vary with each step.

As expected, the classification accuracy improved with
more data. The general architecture of the classifier was
not changed. However, several regularization parameters
were changed along with the increase of data. Initially,
there was a strict regularization scheme due to the small
size of data. The regularization was periodically relaxed to
prevent under-fitting. The classifier obtained a maximum
classification accuracy of 95.6%, which was trained with
actual data and 150% of generated data. Further improvement
of the classification accuracy required the data changes to
the data architecture. Since the authors intended to improve
the model’s performance through data augmentation, only
expanding the training data was not considered. Another vital
fact to be considered is preserving data integrity if more
generated data will be used than actual data.

A common result during the training phase of a GAN
is mode collapse. In mode collapse, the Generator learns
a single solution that deceives the discriminator. As the
discriminator processes each point independently, it cannot
know how different each Generator solution is from the other.
Thus, all outputs generated become the single point that
the discriminator believes is realistic. The authors initially
encountered this problem and solved it by adding a minibatch
discrimination layer for the discriminator. Minibatch dis-
crimination examines solutions in combination and penalizes
the discriminator if the solutions are similar. Evaluation of
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TABLE I
COMPARISON BETWEEN THE PERFORMANCE OF TRADITIONAL

CLASSIFIERS FOR THE ORIGINAL DATA SET

Model Classification Accuracy% Average AUROC
Logistic Regression 58.6 0.51

Random Forest 64.8 0.59
SVM 70.6 0.72

XGBoost 65.4 0.60

the distribution of the samples generated by the Generator
is a problem. However, researchers are coming up with
new approaches. Visual inspection of generated samples can
help identify apparent failures and mode collapse. Visual
Inspection cannot give any quantitative information about
the variance of generated samples and how similar they
are to the training data. A common approach to providing
information about the quality of the trained Generator is to
use the inception score (IS) mainly for image data.

One difficulty that the authors came across was the verifi-
cation of the generated signals. When GANs are used for
image generation, even a visual comparison can indicate
how good the generated samples are compared with the real
samples. There are no definite visible markers to compare
with the real samples through visual inspection of fNIRS
data. One area of improvement that future researchers can
consider is verification. Further, since this study intends to
diversify the samples, a proper verification method that can
verify the samples do belong to different individuals can help
future studies. If this verification process can be successful,
the generated data can be used for other medical-related
purposes such as simulation besides classification.

More prominence should be given to a proper verification
process in future studies since it seems the traditional veri-
fication metrics do not make any sense in this context. With
an appropriate verification method, these models can expand
roles in neural simulations and assist in both medical training
and classification algorithms. Further, the ideal amount of
data required to train the model properly will vary according
to the situation. There may be a generalized way to determine
the amount of data that has to be generated.

IV. CONCLUSION

The authors propose a ternary classification system com-
bined with a GAN system. The GAN system can be appro-
priately trained to generate synthetic samples of the training
data. GAN facilitates data augmentation, which can increase
the accuracy of the classification model. For many medical
field-related classifiers, the lack of adequately labeled data is
a significant concern. GAN networks can generate data that
can be used for network training to increase performance
metrics. GANs are currently focused on image generation.
The sequence generation models still suffer from the diffi-
culty of convergence. Further verification methods regarding
generated sequences can also be improved. In order to gen-
eralize the model a proper verification method is essential,
and should be considered as a future research direction. For
medicine and health science, where collecting data from

TABLE II
TRAINING DATA COMPOSITION AND PERFORMANCE METRICS FOR THE

CLASSIFIER

Data Classification Acc.% Avg. AUROC
Real Data+0% Gen. Data 78.2% 0.69

Real Data+10% Gen. Data 80.4 % 0.72
Real Data+20% Gen. Data 81.6% 0.7
Real Data+30% Gen. Data 81.8 % 0.75
Real Data+40% Gen. Data 82.4% 0.77
Real Data+50% Gen. Data 84.2% 0.80
Real Data+60% Gen. Data 85.8 % 0.80
Real Data+70% Gen. Data 86.4% 0.82
Real Data+80% Gen.Data 88.2% 0.84
Real Data+90% Gen. Data 88.6% 0.86

Real Data+100% Gen. Data 89.4% 0.85
Real Data+110% Gen. Data 90.2% 0.88
Real Data+120% Gen. Data 92.2% 0.90
Real Data+130% Gen. Data 92.8% 0.88
Real Data+140% Gen. Data 94.4% 0.92
Real Data+150% Gen. Data 95.6% 0.92

many people is practically difficult due to economic or time
constraints, an adequately trained GAN network can generate
artificial data to improve classification accuracy.
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