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Abstract— The major cause of serious or even fatal injury
for the elderly is a fall. Among various technologies developed
for detecting falls, the camera-based approach provides a non-
invasive and reliable solution for fall detection. This paper in-
troduces a confidence-based fall detection system using multiple
surveillance cameras. First, a model for predicting the confi-
dence of fall detection on a single camera is constructed using
a set of simple yet useful features. Then, the detection results
from multiple cameras are fused based on their confidence
levels. The proposed confidence prediction model can be easily
implemented and integrated with single-camera fall detectors,
and the proposed system improves the accuracy of fall detection
through effective data fusion.

I. INTRODUCTION

One of the most concerning injury for the elderly is falling
that could happen when there is not anyone around. Many
individuals aged 65 and over are less resilient and more
vulnerable to accidental falls [1]. In most cases, an injured
person has difficulty calling for help, or he/she could not
get up by themselves and is exposed to a prolonged stay
on the ground, which possibly results in serious or fatal
injury. To protect the elderly against harmful falling events,
fall detection solutions have been developed using wear-
able devices, ambient sensors, and video cameras. Although
wearable devices with accelerometers are very capable of
detecting inactivity and postural movement, it is onerous for
the elderly to always wear a physical device [2]. Ambient
sensors, such as audio and vibration sensors, have difficulty
in differentiating human fall from an inanimate object fall
due to their less visibility nature [2]. Unlike the other ambient
sensors, video cameras provide rich and useful information
for fall detection. Moreover, video cameras have already been
deployed ubiquitously for surveillance purposes. Therefore,
the vision-based approach is a promising non-invasive and
low-cost solution for practical fall detection systems.

The video sequences are usually examined for body shape
changes [3] to detect falls. In [3], the shape deformation
of a person’s silhouette is analyzed, and then falls are
detected from normal activities using a Gaussian mixture
model (GMM). A simple detection solution is designed based
on human shape variation analysis and presenting a person’s
silhouette by only three points instead of an ellipse or a
bounding box [4]. Another study in [5] analyzes body parts
movements. It devises a detected bounding box into a ratio
of 30:40:30. Falls are detected based on the vertical motion
velocity, the ratio of head’s center and its variance, and the
body parts motion velocity.

Recently, Convolutional Neural Networks (CNN) have
been applied in fall detection systems. The algorithm in [6]
feeds RGB images to an optical flow image generator, based
on which a CNN learns features and then classifies if a
sequence of frames includes fall events. Similarly, the fall
detection approach in [7] utilizes a combination of optical
flow images obtained from two cameras and performs feature
extraction and classification based on CNNs. A drawback of
these algorithms is that the models may need to be re-trained
if the number of cameras or the relative positions of cameras
changes. The system, moreover, would require a big data
set for training, which is challenging considering the limited
number of public data sets.

The presence of multiple cameras in a surveillance system
may capture the same human object from different views,
providing more enriched observation. The information from
multiple cameras could be jointly considered to improve de-
tection performance. In [3], each camera has a vote resulting
from the GMM classifier, and a simple majority vote method
is used to make a final decision on all the cameras.

This paper studies how to improve the overall performance
of a multi-camera system based on the fall detection results
from individual cameras. The confidence of detection on
each camera depends on specific scenes. From a particular
camera view, one might look like in a standing posture
while it possibly is a falling one on a different angle view.
This study analyzes a set of features to determine the confi-
dence level of each camera’s detection result. These features
are change rates of detected silhouette’s ratio, orientation,
centroid’s height, optical x-axis projection, brightness, blind
quality score, and silhouette’s size. The detection results from
multiple cameras are then fused taking into consideration
their confidence levels.

Our major contribution in this work is an efficient model
for predicting the confidence of fall detection on individual
cameras in a system. Unlike other works that are designed
on a specific number of cameras [6] [7] or for a particular
single-camera detection algorithm [3] [4] [5], we provide
a general solution that works for any number of cameras
and with different single-camera fall detection algorithms.
Besides, the proposed confidence prediction solution involves
very low overhead, allowing the real-time fusion of detection
results from multiple cameras.
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Fig. 1. Sample snapshots of video data set of scene 1.

II. CONFIDENCE-BASED FALL DETECTION

In this research, we study a public fall detection data
set introduced by [8]. This data set consists of 24 scenar-
ios of different activities and various ways of falling, and
each scene is captured by eight inexpensive IP cameras
from different views. The video sequences have an average
length of 13 seconds with a frame rate of 120 frames per
second, and a resolution of 720×480. It includes activities
performed by one person comprise walking, housekeeping,
sitting down, standing up, forward fall, backward fall, and
loss of balance fall. For example, Fig.1 shows labeled fall
frames from different views in Scene 1. In our study, the data
set is fragmented into small window segments of sequential
frames. A 15-frame window is investigated since it has been
found in [8] that a fall event most likely happens within half
a second.

We apply the open-source fall detection algorithm in [9]
on the videos by each individual camera. We evaluate the
sensitivity, specificity, and accuracy of the detection results
on each camera, which are given by the following equations:

Sensitivity =
TP

TP + FN
;Specificity =

TN

TN + FP
(1)

Accuracy =
TN + TP

TN + FP + TP + FN
(2)

where TP, TN, FN, FP stand for the numbers of true positive,
true negative, false negative, and false positive events.

The sensitivity indicates how well an algorithm detects a
fall, and specificity shows performance on a no-fall detection.
As accuracy is related to both sensitivity and specificity, we
propose to evaluate the accuracy on a window of frames as
the confidence of fall detection (CoF ).

A. Confidence of Detection

We present a model for predicting the accuracy of fall
detection or CoF on a single camera. This model utilizes a
set of features that could be easily obtained through analysis
of the video frames in a window. Two categories of features
are extracted: features reflecting the overall quality of the
video frames, and features that indicate the characteristics of
a human object in the videos.

First, the overall quality of the video frames could have
some effects on the accuracy of detecting an object, which
is an important step in activity recognition. We propose
two features in this category: the brightness level and the
perceptual quality of a frame. The average brightness level
is calculated for each frame, and then the average brightness
of all the frames in the 15-frame window (meanLuma) is
calculated as one feature for CoF prediction. Regarding the

perceptual quality, a no-reference quality model is needed
here since usually there are no reference images for quality
evaluation in practical settings. The commonly used no-
reference BRISQUE model [10] is applied to get a quality
score on each frame in the window, and the average of the
quality scores (meanQs) is calculated as another feature for
CoF prediction.

The most challenging problem in detecting a fall is
differentiating actual fall events from other daily activities
that have similar characteristics to fall. In addition to video
quality, the detection accuracy is also related to how a
human object is captured by the surveillance cameras. The
following features are extracted to describe the characteristics
of a human object in a video. All of the features could be
easily obtained during the execution of commonly-used fall
detection algorithms.

• Change rate of Silhouette’s ratio. A Silhouette’s ratio
is determined by a bounding box that encapsulates
the detected object. As shown in Fig. 2, r = a/b
where a and b are the horizontal and vertical lengths
of the bounding box, respectively. This ratio could
indicate whether the object is laying, standing, or else.
The change rate of the ratio δr implies a change in
movement or body posture, given by

δr =
r(t)− r(t− tw)

tw
(3)

where t denotes time; tw is the length of time window.
The values of δr for a scene are plotted in Fig. 3(a),
where δr of no-fall frames are approximately zeros,
whereas the one of fall frames are not.

• Change rate of orientation. Another property to con-
sider is the object’s orientation, as shown in Fig. 2. The
change rate of orientation δOrt is given by

δOrt =
θ(t)− θ(t− tw)

tw
(4)

where orientation represents angle between the el-
lipse’s major axes and the x-axis; t denotes time; tw is
the length of time window. Fig. 3(b) signals a difference
between fall frames and no-fall frames in term of
orientation change rate.

• Average and standard deviation of a detected centroid’s
height (meanCH and stdCH). From observation, the
height of the detected centroid CH indicates a position
of a person from the floor. For example, if a person lays
on the ground, a centroid of the bounding box would be
a lot smaller than when it stands. This property could be
reversed if it is viewed from a different angle. As shown
in Fig. 4 (a) and (b), both meanCH and stdCH of fall
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Fig. 2. Features Based on A Detected Object

Fig. 3. Change rate of silhouette’s ratio and orientation of Scene 1

frames are separated from the no-fall frames, and the
values of stdCH for fall-frames are consistently higher
than that of no-fall-frames.

• Average and standard deviation of the silhouette’s pro-
jection on optical x-axis (meanOP and stdOP ). These
features can indicate whether or not it is easy to detect
a person falling. Intuitively, a projection on the x-axis
would rather big if the person is laying on the ground.

• Average size of the detected silhouette meanSize. This
feature partially contributes to how well a posture
detection is. As stated in [11], it would be hard to detect
the object from the background if its size is either too
small or too large. We calculate the average size of the
detected silhouette in the time window.

After obtaining all the selected features, we use the
Bagged tree of ensemble classifier to train a classification
model [12]. On an independently drawn bootstrap copy of
input data, every tree in the ensemble is grown. This model
is to predict confidence of a fall detection based on the
aforementioned 9 features from a 15-frame window. The
tuning parameters of the ensemble are the maximum number
of splits and the number of learners. The outputs of the
prediction model (predicted CoF ) are quantized into 11
levels or classes: 0.001, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, and 1, where 1 indicates the most confident in detection,
and 0.001 serves the very less likely.

Fig. 4. Center of Height and Optical x-axis Projection of Scene 1

B. Confidence-based Data Fusion

Once the confidence of detection CoF is determined on
each camera, we combine them by associating CoF with x,
the detection result of the camera. We then fuse the detection
results using the following equation:

CbFD =
∑

(CoF ∗ x) (5)

where x takes values of 1 (fall) and -1 (no fall). Finally, the
system output is fall if CbFD > 0 and no fall if CbFD ≤ 0.

III. PERFORMANCE EVALUATION

To evaluate the performance of the proposed confidence
prediction model, the entire data set is divided into a training
set and a testing set, which are listed in Table I. Each video
scene comprises 8 camera views from different angles. The
training set includes 18 scenes that are randomly selected
from the whole data set, and the remaining scenes are for
testing. For training, 5-fold cross validation, 30 learners, and
a maximum splits of 119854 are set to build the ensemble
trees.

The classification performance of the proposed confidence
prediction model is presented in Fig. 5. On a large number of
observations (119855 data points), the proposed features are
calculated over a time window of 15 frames per observation.
The majority of data points are in either class 0.001 or class
1, and most of them are correctly classified. The classification
performance for in-between classes (class 0.2 - 0.8) is fair,
but there are only 2.5% data points from these classes. The

TABLE I
LEARNING SETTING

Category Video Name Data Points Percentage
chute02, chute03, chute04, chute05,
chute07, chute08, chute10, chute11,

Training set chute12, chute13, chute14, chute16, 119855 78.26%
chute17, chute18, chute19, chute20,

chute21, chute22
Testing set chute01, chute06, chute09, 93673 21.74%

chute15, chute23, chute24
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overall accuracy of classification on the entire training set is
95.3%.

Among 24-scene of the experimental data set, there are
25 fall events and 49 no-fall events, and a fall event has 40
frames on average. For example, in scene 1, a fall event starts
from 1080th to 1108th frame. If a fall is detected within the
fall event window, a TP is incremented toward the system
evaluation. Otherwise, it is considered for a FP.

Fig. 5. Confusion matrix of Confidence Prediction model

Next, the overall performance of the confidence-based
fusion approach is evaluated on the entire data set. The fall
detection algorithm for single cameras in [9] is implemented.
Table II describes a comparison of performance in terms of
accuracy, sensitivity, and specificity, and Table III depicts
the confusion matrices of our proposed algorithm and the
majority vote approach in [3]. Our proposed model improves
the system’s performance in all terms. As can be observed
in Table II, the proposed algorithm greatly increases the
sensitivity in comparison to the majority vote algorithm and
the average performance on single camera based detection.

During the experiment, we notice that there are some
frames where the detector does not detect a whole silhouette
of the object of interest. Moreover, there are some instances
where the person moves close to a still-object, and both areas
are detected as one object. These result in some incorrect
feature values. Another issue, that causes a lower rate of
sensitivity, is related to how the fall frames are labeled.
These observations suggest some rooms for improvement of
the proposed work: a better object detection algorithm could
help improve our prediction model by better differentiating
human objects from other objects.

TABLE II
FALL DETECTION PERFORMANCE OF A SYSTEM INTEGRATED WITH [9]

Algorithm Accuracy Sensitivity Specificity
CbFD (Proposed) 72.00% 30.56% 64.10%
Majority Vote [3] 66.67% 0.00 % 66.67%

Average Single-Camera [9] 44.00% 16.00% 58.00%

TABLE III
DETECTION PERFORMANCE COMPARISON

CbFD Majority Vote
Detected Detected

Fall no-Fall Fall no-Fall

Labelled Fall 11 14 0 25
no-Fall 24 25 0 49

IV. CONCLUSION

In this paper, a confidence-based fall detection solution
for multiple-camera systems has been proposed. The solution
integrates a new model for predicting the confidence of fall
detection on each camera using easily obtained features. The
detection results from multiple cameras are then fused based
on their confidence levels. The proposed solution achieves
better performance than the majority vote algorithm and
single camera detection. With low-complexity, the proposed
method can be adapted to a system with any number of
cameras and different single-camera detection algorithms. In
the future, we hope to verify our solution using more data
in practical surveillance scenarios.
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