
  

  

Abstract—Local field potentials (LFPs) have better long-term 
stability compared with spikes in brain-machine interfaces 
(BMIs). Many studies have shown promising results of LFP 
decoding, but the high-dimensional feature of LFP still hurdle 
the development of the BMIs to low-cost. In this paper, we 
proposed a framework of a 1D convolution neural network 
(CNN) to reduce the dimensionality of the LFP features. For 
evaluating the performance of this architecture, the reduced 
LFP features were decoded to cursor position (Center-out task) 
by a Kalman filter. The Principal components analysis (PCA) 
was also performed as a comparison. The results showed that the 
CNN model could reduce the dimensionality of LFP features to 
a smaller size without significant performance loss. The 
decoding result based on the CNN features outperformed that 
based on the PCA features. Moreover, the reduced features by 
CNN also showed robustness across different sessions. These 
results demonstrated that the LFP features reduced by the CNN 
model achieved low cost without sacrificing high-performance 
and robustness, suggesting that this method could be used for 
portable BMI systems in the future. 

I. INTRODUCTION 

The brain-machine interfaces (BMIs) have developed 
rapidly in recent years, especially towards speech decoding [1, 
2] or computer cursor / robotic arm control [3-5]. By using the 
electroencephalogram (EEG) or electrocorticography (ECoG) 
grid or Microelectrode array to record neural activities, the 
BMI decoders can directly translate the intention of users into 
the control commands of external devices [6-8]. Although lots 
of promising progress have been achieved recently, the 
performance of BMI is still limited by recording methods and 
characteristics of the neural signals. Normally, the recorded 
neural activities have attributes like high-dimensional and 
strong-relevant inputs, low signal-to-noise ratio, poor long-
term stability [10], etc. These attributes heavily affect BMI 
decoders both on computing time and decoding performance. 

The neural signal binning and decoding rates have a 
significant impact on a real-time BMI system [11]. Common 
BMI decoding algorithms at present like Kalman filter (KF) [6] 
or optimal linear estimation (OLE) [9] need to calculate the 
inverse of the matrix in each step of the prediction, which 
brings a huge computation burden when processing high-
dimensional neural data such as local frequency potential (LFP) 
or multi-array spikes, especially of the non-PC, portable 
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devices like FPGAs or DSPs. Dethier et al. [12] reported that 
the power consumption of an x86 processor was 1.8mW 
approximately to perform 2D Kalman filtering on a 96-channel 
array. Moreover, the consumption of time and power 
dramatically rises with the increase of neural features. In 
addition, Weiss et al. [13] developed a portable BMI system 
by integrating a wearable neural signal processor hub (wNSP 
hub) with a medical-grade tablet PC. Their system 
demonstrated that running decoding tasks on relatively low-
performance tablet hardware may result in poor performance, 
manifested by irregular timing and poor battery life. In general, 
to address the power-consuming problem, one option is to 
choose more powerful hardware, which might mean a trade-
off between portability and performance. Another option is to 
develop novel decoding algorithms to reduce power 
consumption [12, 14]. And the last option is to utilize the 
redundancy between neural activities to reduce the feature 
number, which aims to employ the fewer neural features to 
maintain the optimum decoding performance. 

In this study, we proposed a framework of a 1D 
convolution neural network (CNN) to reduce the 
dimensionality of the LFP features when offline analyzing 
these LFP signals collected from the primary cortex (M1) of 
one monkey during a center-out task. The performance of our 
CNN method was compared with classical Principal 
components analysis (PCA). Our results show: 1) The CNN-
based dimensionality reduction features achieved significantly 
higher daily decoding performance than PCA-based features; 
2) The CNN model could compress LFP features to lower 
dimensions than PCA without degrading the decoding 
performance; 3) The CNN model trained in the former session 
can be applied to the following sessions without significant 
decoding performance loss. 

II. DATA AND METHODOLOGY 

A. Data Acquisition 
In this study, a monkey had a silicon 96-electrode 

microelectrode array (Blackrock Microsystems) implanted in 
the left M1, contralateral to the right arm used to control the 
cursor. The microelectrode array was implanted in the arm 
area, as estimated visually from local anatomical landmarks. 
All surgeries and experimental protocols were approved by the 
Guide for The Care and Use of Laboratory Animals (China 
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Ministry of Health) and the Animal Care Committee at 
Zhejiang University, China. 

The 96-channel neural data from M1 were recorded by the 
Cerebus aquization system (Blackrock Microsystems) at a 
sample rate of 2000Hz. The behavioral data were recorded by 
a joystick which is connected to a computer with USB 
(sampled at 100Hz) and is down-sampled to 10Hz for analysis. 
LFP signals were band-pass filtered from 0.3 Hz to 400 Hz. 
Different frequency bands of 0.3-5 Hz, 5-8 Hz, 8-13 Hz, 13-
30Hz, 70-200 Hz, 200-400 Hz were extracted separately. And 
the extracted LFP spectral power was furtherly down-sampled 
to 10 Hz and aligned with behavioral data. In this study, five 
sessions across five days were recruited. The average 
recording time was 40.75 minutes (652 trials) in each session. 

B. CNN-based Dimensionality Reduction Model 
The object of dimensionality reduction of LFP features 

includes reducing the number of electrodes 𝑛𝑛, and the number 
of frequency bands 𝑚𝑚 . From the perspective of reducing 
network size, the network reducing 𝑚𝑚 frequency bands then 𝑛𝑛 
channels have fewer parameters than of the network directly 
reducing 𝑚𝑚 × 𝑛𝑛 LFP matrix. Besides, the network that reduces 
𝑚𝑚 and 𝑛𝑛 separately may be more interpretable than the direct 
reduction network. 

The main module of the CNN model is a 1D convolutional 
layer with kernel size 1 × 1 followed by an instance 
normalization layer [15] and leaky rectified linear activation 
(LReLU) [16]. 1 × 1  convolution is widely used in 
dimensionality reduction to reduce the network parameters [17, 
18], which is one of the main reasons why we chose this 
approach. Moreover, 1 × 1  convolution exchanged 
information between channels by linearly combining different 
weighted signal sequences. And the non-linear characteristics 
of these linear feature combinations have been increased via 
the involvement of the leaky ReLU activation function. The 
architecture of the CNN model is shown in Fig.  1, with details 
listed in Table I.  

The network aims to minimize the mean square error 
between the actual cursor position and the prediction position 
decoded from the reduced LFP features by optimizing the 
following loss function: 

ℒ = 1
2

E([Φ(C(𝑧𝑧)) − 𝑦𝑦]2) (1) 

Where Φ represents the neural-to-kinematic mapping function, 
C  is the CNN dimensionality reduction network, 𝑧𝑧  is the 
recorded LFP data, and 𝑦𝑦 is the actual cursor positions. 

In this network, a Kalman Filter (KF) was used as the Φ 
function to constrain the learning of C during training epochs. 
The training and prediction of KF followed the method in [19]. 
In each step of the training phase, C(𝑧𝑧) is randomly divided 
into two consecutive parts 𝑓𝑓1 and 𝑓𝑓2. 𝑓𝑓1 is used to estimate the 
state and measurement parameters of the Kalman filter. And 
𝑓𝑓2 is used to predict cursor position. The update of parameters 
of C only depends on 𝑓𝑓2, as 𝑓𝑓1 used to train Kalman filter has 
no contribution to the loss computation.  

C. PCA-based Dimensionality Reduction 
The PCA-based dimensionality reduction method was 

employed as a control of our CNN-based dimensionality 
reduction in this study. Different from that the CNN model 
reduces the number of frequency bands and electrodes 
separately, the PCA method directly cuts down the number of 
LFP features [20]: 

PΔ𝑄𝑄𝑇𝑇 = svd(z −  𝑧𝑧̅) (2) 

𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑧𝑧𝑄𝑄𝑛𝑛 (3) 

Where 𝑄𝑄 denotes the coefficients of the linear combinations of 
z, 𝑛𝑛 is the size of the target dimension.  

For comparing the dimensionality reduction results 
between CNN and PCA, the output of the two methods was 
fed into the Kalman filter to predict cursor position during the 
testing. The correlation coefficient (CC) and mean square error 
(MSE) were used as the metrics to evaluate their performance. 

III. EXPERIMENTS AND RESULTS 

A. Model Training 
The CNN model parameters used are listed in Table I. “LN” 

denotes the instance normalization, and Conv1D (N) denotes a 
one-dimensional convolution layer with N channels. The 
weights and bias of each convolution layer were initialized by 
normal distribution 𝒩𝒩(0, 0.02) and constant 0, respectively. 
This model was trained by Adam optimizer [21] with max 
epoch 100, and the initial learning rate was set to 0.001. The 
early stopping rule was utilized to prevent over-fitting. When 
the validation loss did not decrease in 7 epochs, the training 
was terminated. The model was implemented using Pytorch 
with CUDA. 

TABLE I.  CNN PARAMETERS 

Input: LFP (6 × 96) 
Conv1D (16), IN, LReLU, width=1, stride=1 
Conv1D (8), IN, LReLU, width =1, stride=1 
Conv1D (4), IN, LReLU, width =1, stride=1 
Conv1D (2), IN, LReLU, width =1, stride=1 
Transpose: (96 × 2) 
Conv1D (N), width =1, stride=1 
Output: dimension reduced LFP (N ×2) 

 

 
Fig.  1. Dimensionality reduction model architecture. The input LFP data 
first go through 4 1×1 convolution layers to reduce the number of frequency 
bands to 2, then transpose the output and input it to another 1×1convolution 
layer to reduce the number of electrodes. The reduced LFP features 
decoded by Kalman filter to cursor position on the screen. 
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B.  Decoding Accuracy of the Reduced LFP Data 
The reduced dimension was set to 96 features, which 

averagely explained 90.48% variance in PCA overall five 
sessions data. And that means we reduced the N = 48 in our 
CNN model. A five-fold cross-validation was used to 
investigate the decoding consistency. The dataset in each 
session was split into 0.4, 0.4, and 0.2 as the training dataset, 
validation dataset, and test dataset. After dimensionality 
reduction, the processed features from the PCA-based method 
and CNN-based method were decoded to the cursor position 
by the Kalman filter. As a comparison for the dimensionality 
reduction effect, we also decoded all frequency bands (576) 
and just 200-400 Hz of LFP that was found more relevant to 
the movement [22]. The decoding results showed that the 
features from our CNN significantly outperformed (paired t-
test, p < 0.05) the features from PCA in the first four sessions 
in both directions, but not the last session. This caused by the 
last session recording software paused several times in the 
beginning, made the recording unstable in the first fold. 
Moreover, the decoding results of the CNN reduced features 
also significantly outperformed all features decoding and only 
200-400 Hz decoding (paired t-test, p < 0.05). The decoding 
results showed in Fig.  2. 100 seconds example of decoding 
trajectory from CNN-based features (green line) and PCA-
based features (blue line) showed in Fig.  3. The green line fits 
the actual trajectory well, while the blue line had some error 
predicted peak values , suggesting that the CNN-based 
features generate a more accurate neural-to-kinematic 
mapping. 

C. The Decoding Performance of Different Number of 
Components 
The above results showed the high performance of the 

CNN model when the number of dimensions reduced to 96, it 
is suggested that the dimension of the LFP signal may still 
have potential redundancy. To explore the minimum 
dimensionality that can maintain the high decoding 
performance, we set the N to 2, 8, 16, 32, 48, 64, and 80 while 
the corresponding PCA components are 4, 16, 32, 64, 96, 128, 
and 160 respectively. Fig.  4 showed that compared to the 96 
LFP features, the average decoding CC and MSE of 4 LFP 
features obtained from CNN only decreased by 1.64% and -
8.59%, respectively. However, for 4 LFP features from PCA, 

the average decoding CC and MSE decreased by 57.94% and 
-158.49%, respectively. 

IV. DISCUSSION 

In this study, we demonstrated that a network architecture 
consisting of five 1×1 convolution layers was able to reduce 
the dimension of LFP features. A neural-to-kinematic 
mapping function was introduced to regularize the training of 
our model. Furthermore, our proposed CNN model maintained 
high-performance decoding with features of small number 
components, significantly outperformed the PCA features with 
same number of components. 

A. Relationship between the decoding costs and the 
dimensionality of LFP 
The Kalman filter process has two steps: (1) the state 𝑥𝑥�𝑡𝑡+1 

prediction using the state equation and the current state 𝑥𝑥𝑡𝑡, and 
(2) the update of the predicted state 𝑥𝑥�𝑡𝑡+1  based on the 
measurements 𝑧𝑧𝑡𝑡+1. The computational cost of updating the 
Kalman filter is O(𝑛𝑛𝑚𝑚2 + 𝑛𝑛2𝑚𝑚)  [23], where n is the 
dimension of 𝑥𝑥, m is the dimension of 𝑧𝑧. For BMI application, 
especially for LFP based BMI, if 𝑚𝑚 ≫ 𝑛𝑛 , makes the 
consumption of time and power dramatically rises with the 
increase of 𝑚𝑚. Research has shown that running spikes with 96 
electrodes to a 2-degree Kalman filter on an x86 processor 
took 0.985us/update, consumes 1.82mW for 20 updates/sec 
[13, 24]. This lack of low-power decoding hinders the 
development of the BMI. However, our results showed our 
CNN model could reduce the dimension of LFP features from 
576 to 4, and maintain high-performance decoding. When 

 
Fig.  2. Decoding results of Kalman filter of 4 different types of features. 
All LFP features (96 channels with 6 frequency bands, red bar), only 200-
400 Hz features (96 channels, yellow bar), and PCA-based dimensionality 
reduced LFP features (blue bar) are used to compare with CNN based 
dimensionality reduced features (green bar). The stars denote the CNN-
based features significantly outperformed other methods (paired t-test). 
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Fig.  3. Decoded trajectory example of dimensionality reduced by PCA 
and CNN. 
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Fig.  4. Decoding results of different dimensionality. The stars denote 
decoding results of CNN features significantly outperformed PCA 
features (paired t-test). The yellow line is the variance explanation of 
PCA of the different numbers of features. 
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reducing the dimension of LFP signals to 4, the time costs of 
our CNN model and Kalman filter are O(96 × 268) +
O(48) = O(25776), which is much lower than the costs of 
decoding LFP directly (O(2 × 5762 + 22 × 576)). It suggests 
that our CNN model can reduce the power costs and speed up 
the decoding process dozens of times. 

C. Interpretability of the CNN model 
Our CNN model reduces the number of frequency bands 

and the number of electrodes sequentially, when reducing the 
number of frequency bands, the number of electrodes remains 
constant, vice versa. Reducing the dimension of frequency 
bands can be treated as a weighted linear combination of 
different frequencies, then non-linearity is added by the 
activation function. These reduced bands might be higher-
order representations of brain states [25]. Reducing the 
number of electrodes also a process of weighted linear 
combination of different electrodes, but no activation function 
is applied. Moreover, by reducing the number of frequencies 
first, the size of the network is smaller compared to reduce the 
number of electrodes first. This makes 30 minutes of data is 
sufficient to train our CNN model. 

However, in this pilot study, we only demonstrated the 
CNN model performance by decoding. The analysis of the 
reduced LFP features is insufficient. Our work at the next step 
may focus on analyzing the properties of the reduced LFP 
features to get a better understanding of the network and the 
LFP signals. 

V. CONCLUSIONS 
This paper proposed a dimensionality reduction method 

using five layers of a 1D 1×1 convolution neural network to 
reduce the frequency bands and electrodes separately. Using 
the Kalman filter as the decoder, the decoding accuracy of the 
reduced features from our method outperforms the non-
reduced LFP features and those extracted by PCA. Moreover, 
the CNN model can compress the dimension of LFP signals to 
a smaller size without significant performance loss. Compared 
to the 96 reduced features, four reduced features from CNN 
has a performance loss of 1.64%, while the PCA has a 
performance loss of 57.94%.  
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