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Abstract— As our ability to record neural activity from a

larger number of brain areas increases, we need to develop

tools to understand how this activity is related to ongoing

behavior. Recurrent neural networks (RNNs) have been shown

to perform successful classification for sequence data. However,

they are black box models: once trained, it is difficult to uncover

the mechanisms that they are using to classify. In this study,

we analyze the effect of RNNs on classifying behavior using

a simulated dataset and a widefield neural activity dataset as

mice perform a self-initiated behavior. We show that RNNs are

comparable to, or outperform, traditional classification methods

such as Support Vector Machine (SVM), and can also lead to

accurate prediction of behavior. Using dimensionality reduction,

we visualize the activity of the RNNs to better understand

the classification mechanisms of the RNNs. Finally, we are

able to accurately pinpoint the effect of different regions on

behavioral classification. This study highlights the utility and

interpretability of RNNs while classifying behavior using neural

activity from different regions.

I. INTRODUCTION

Different regions in the cortex have been anatomically
defined as having distinct relationships with behavioral ac-
tivity, which consists of both receiving signals from and
contributing towards specific behavior. For example, the
somatosensory cortex receives somatic signals from touch
and proprioceptive sensors across the body, the olfactory
bulb encodes for smell-related signals from the nose, and the
motor cortex can directly control muscles [1]. As our ability
to record from larger swathes of the brain with unprecedented
spatial and temporal resolution increases, our understanding
of how neural activity is related to ongoing behavior is
changing; it has recently been shown that movement signals
are encoded in population recordings and single neurons
across the mouse cortex, including in many sensory regions
[2], [3]. However, how the neural signals from different
regions contribute to behavioral decoding across time is less
well understood. One important consideration, especially in
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Fig. 1. A schematic showing the input data and architecture of the recurrent
neural network (RNN) used for behavioral classification of neural activity
from different brain regions

brain machine interface applications, is the ability to decode
different classes of behavior. For example, Soon et al. used
fMRI data to decode human behavior, and showed that
the human brain begins to prepare an upcoming decision
before awareness [4], and López-Larraz et al. decoded upper
limb self-initiated movements via EEG data [5]. However,
pinpointing the contribution of each region towards classi-
fication of different behaviors is key towards illuminating
the role of each region. Thus, methodological development
towards revealing the importance of different brain regions
for decoding is crucial.

When classifying using temporal activity, it is important to
work with sequence models. The Recurrent Neural Network
(RNN) is a sequence model derived from feed-forward neural
networks, which explicitly models the passage of time in the
internal states. Using a memory component, the output of an
RNN is influenced by the previous state, and thus also by
past inputs. As a consequence of using weighted memory
and feedback loops, RNNs are efficient in classification,
and have been successfully used towards classification of
sequence data. For instance, in [6], Yogatama et al. used
RNNs to classify text, in [7], the authors performed image
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classification via RNNs, and in [8], Cui et al. analyzed the
diagnosis of Alzheimer’s disease by using RNNs to perform
classification. However, training RNNs can be difficult: due
to the complexity of their network structure, it usually takes
the adjustment of many hyper-parameters to achieve the
best capabilities and generalize on unseen data. Moreover,
RNNs are black boxes: although they are a universal function
approximator, they do not provide insights into the structure
of these functions [9]. In this study, we analyze the effect
of RNNs on classifying behavior using a simulated dataset
and a widefield neural activity dataset as mice perform a
self-initiated behavior. Moreover, we develop methods to
visualize the effect of different regions on classification of
brain-wide data. We show that (a) RNNs perform comparably
or outperform traditional classification methods such as Sup-
port Vector Machines (SVM), (b) we are able to understand
the classification mechanisms of the RNNs, and (c) we are
able to accurately pinpoint the effect of different regions on
behavioral classification. Lastly, we end with showcasing the
ability of RNNs to perform predictive classification of the
behavior.

II. METHODS

A. Recurrent Neural Networks (RNNs)

1) Architecture: Here, we describe our approach to build
a classification model with temporal neural data x 2 RR⇥T

from R different brain regions and T time points as the input,
with the outputs as the different classes of behavior. We
implement a hidden recurrent layer with the tanh activation
function, and a dense layer at the output with the sigmoid
activation function s to predict the class, here binary. Fol-
lowing are the equations of the RNN network.

ht = tanh(Whht�1 +Wxxt +bh) 8t 2 [1,T ] (1)
yt = s(Wyht +by) 8t 2 [1,T ] (2)

c =

(
0, if yT < 0.5
1, otherwise

(3)

where xt is the neural data from all R regions at time point t,
ht 2RN⇥1 is the value for the N hidden units at time point t,
Wx 2 RN⇥R is the input weight matrix, Wh 2 RN⇥N contains
the recurrent weights for the hidden layer, and Wy 2 R1⇥N

represents the output weight matrix. yt is the output of dense
layer. The specific structure is shown in Figure 1. For most
of the analyses, we use the output at the last time point, i.e.,
yT , to predict the class c (Equation 3). In Section III-D, to
analyze predictive classification, we output a class ct at every
time step, based on the output yt at every time step.

We chose the number of hidden units as 64, and we trained
the network for 200 epochs using Adam at a learning rate
of 0.0001. These hyper-parameters were determined using
cross-validation on a sample session of the dataset. We used
Keras with the Tensorflow backend to train our models [10],
[11]. We performed all tasks on HiPerGator Computational
Supercomputer at the University of Florida, with NVIDIA
GeForce RTX 2080TI GPUs.

2) Accuracy quantification: We applied 10-fold
cross-validation to all of our experiments which
output the accuracy. Accuracy here is defined as
1
K ÂK

k=1
T P(k)+T N(k)

T P(k)+T N(k)+FP(k)+FN(k) , where K is the number of
folds, here 10, T P(k) is true positives in the kth fold, T N
is true negatives, FP is false positives, and FN is false
negatives. In addition to accuracy to quantify decoding
performance, we used the following metrics for the widefield
activity dataset.

• Area under curve (AUC): we calculated the area under
the accuracy curve in different time windows, above
chance level. This quantifies the decoding ability of the
classifier.

• Earliest decoding time: this is the earliest time point af-
ter which we obtain consistent and significant decoding
till behavior onset. Significance was determined using a
one-tailed t-test at a significance level of p < 0.05 (after
multiple hypothesis correction using the Benjamini-
Hochberg procedure [12]). This represents the earliest
time that the behavior can be reliably decoded.

As a comparison, we also applied SVM to classify the same
data. The input of SVM consists of the flattened trials, i.e.,
the input dimension is RT .

3) Visualization: For deeper exploration of the mecha-
nism of RNNs for decoding behavior, we visualized the
RNN activity and the decoding process after the RNNs were
trained. Principal component analysis (PCA) can be used to
reduce the dimensionality of the RNN nodes’ activity (h)
from N to d, and these top PCs can then be visualized.
We also use linear discriminant analysis (LDA) to perform
supervised dimensionality reduction, which can reduce the
dimensionality from N to C�1 dimensions, where C is the
number of classes (here C = 2). We perform LDA using
data from each time point, to characterize the maximum
difference between the two classes in that time point.

For exploring the predicting ability of the RNNs over the
course of the trial, we visualized the ‘temporal output score’
to understand how RNN predicts at each time step. Temporal
output score St represents the classification accuracy at each
time step of the input sequence t, using ct as calculated using
yt [13], [14].

4) Quantifying the contribution of different regions: The
important features for decoding are stored in both the time
domain and brain region domain of the data. If the important
features are occluded, the decoding accuracy may decrease
[13], [15]. We first occlude time sub-sequence xt:t+wT of the
entire sequence x1:T , where wT refers to the width of the
occlusion window in the time domain. Then, we calculate
the sum score in time domain by adding the accuracy after
occlusion to all the other time without occlusion. Intuitively,
when the most important time periods are occluded, the
decoding accuracy decreases the most, thus decreasing the
accuracy added to other sub-sequences without occlusion.
The occlusion in time domain is first applied to signals from
all brain regions, and we use this to determine the reasonable
occlusion window wT . The equation for score sum S̄t is
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S̄t = Â
Tsliding
t 0=1 St,t 0 . Here, St,t 0 is defined as the following.

St,t 0 =

8
<

:
0, i f t 2 [t 0 � wT

2
, t 0+

wT

2
],

S(xt0� wT
2 :t0+ wT

2
=0), otherwise.

(4)

where Tsliding is the number of sliding windows.
Finally, we explore the importance in both time and region

domains with fixed window size as determined by time
occlusion above. We call the accuracy of the base classifier
(without occlusion) S. We then quantify the importance of
a region as the decrease in accuracy after occlusion of
each region in each time window (Equation 5). Thus, the
regions and time periods with higher values for importance
are considered to be the most important for decoding. The
equation for importance Vr,t for each region r and time point
t is as following.

Vr,t =
S�S(xr0 ,t0=0, 8r02[r�wR

2 ,r+wR
2 ], 8t 02[t�wT

2 ,t+wT
2 ])

S
(5)

Here, wT was determined as above. For wR, we used the
number of sub-regions that fell within the same region as
determined by their function and location.

B. Simulated Dataset
In order to uncover the effect of different features in both

region and time domain on behavioral classification and
characterize the rationality of the method, we generated a
simulated dataset with very clear features that we wish to
recover using our methods. In this data, each ‘behavior’ trial
contains 200 time points, with 10 dimensions simulating the
different brain region. For each brain region dimension, a
20-time point long peak with maximum amplitude 1 was
included at sequential time points, simulating a traveling
wave across brain regions, as shown in Figure 6A. Gaussian
noise N (0,s) was added to the trajectory from each region,
with s = 0.05. As a control, we simulated trials that have
a peak in the same position as in the ‘behavior’ trials, with
probability 0.5. We generated 4000 trials with equal numbers
of ‘behavior’ and ’control’ trials in the simulated dataset.

C. Widefield Neural Activity Dataset
Widefield experiments records large-scale neural activity

from the mouse dorsal cortex through widefield calcium
imaging. We analyze widefield neural activity while mice
engage in a task. In the experiment, head-fixed water-
deprived mice were trained to pull a lever and hold it
at an angle (for > 100ms) in order to receive a water
supplement. A three-second lockout refractory period was
implemented (i.e., only pulls > 3 sec after a previous pull
were rewarded). Rewarded lever pulls were identified online
(using a lever analog signal). Widefield calcium imaging
was recorded from the mouse dorsal cortex as previously
described [16]. We identify the ‘behavior’ trials as trials that
were tracked in real time to provide water reward, with the
trial centered around the initiation of the lever pull behavior.
As control trials, we take a random sequence from the task
with the same number of time points as ‘behavior’. Thus, the

Fig. 2. (A) Decoding accuracy curve of SVM and RNN in a single session
of M1. Blue (SVM) and green (RNN) curve are showing the decoding
accuracy of ‘lever pull’ vs ‘random’ at each second (30 time points). We
use the middle time point in each time window to represent the accuracy in
this second. The horizontal dash line refers to the chance level (0.5), and
the vertical dash line represents when the ‘lever pull’ happened. The stars
represent the outcome of a one tailed t-test, with one star as p < 0.05, two
stars as p < 0.01, and three stars as p < 0.001. (B) Decoding accuracy of
SVM and RNN for another session of M1. (C) A histogram of the earliest
decoding time using SVMs and RNNs for 10 sessions of M1. The earliest
decoding time is the first time point after which we have consistent decoding
with p < 0.05 (after multiple hypothesis correction). (D) Area under curve
(AUC) for 10 sessions of M1 for SVMs and RNNs. The AUC quantifies
the area under the accuracy curve above chance level.

‘behavior’ trials have a clear behavior initiated at the middle
of the trial, unlike the ‘control’ trials. In order to further
eliminate the influence of multiple instances of lever pulls
occurring during a ‘behavior’ trial, we manually selected
trials such that only one instance of lever pull is located at the
middle in each ‘behavior’ trial. The neural activity is sampled
at 30 time points per second, and each trial in this dataset
contains 600 time points (20 seconds). We spatially align the
imaged neural activity with the Allen mouse brain coordinate
framework [17] using affine transformations, as previously
performed in [2], [18]. We then take pixel-wise averages of
the activity in each of 32 regions as identified by the Allen
atlas, which form our input signals. We use a subset of the
entire dataset to show the validity of our methods; here, we
mainly show results from one mouse with multiple recorded
sessions as it performs the trial. This mouse (M1) has 10
recorded sessions (76.2± 12.8 trials per session). We also
use one session with 108 trials from another mouse (M2)
performing the same task, to show the variability between
how different mice perform the task, in Section III-C.

III. RESULTS
We first show that RNNs are either comparable in ac-

curacy or significantly outperform SVMs for the datasets
described above. We then examine the mechanisms of action
of the RNNs, the ability of the RNN to perform continuous
classification, and finally the effect of different regions on
the classification accuracy. In the following, all results are
reported on held-out test data.

A. Classification Accuracy using RNNs
We consider the classification accuracy of the widefield

activity using RNNs as compared with SVMs. We first
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Fig. 3. (A) RNN decoding accuracy with different trial lengths T . The
trial is always centered on ‘lever pull’. (B) Determining wT : sum scores S̄t
from -3.3s to 3.3s with different time window sizes wT , from 5 time points
to 25 time points.

trained a series of models classifying 30 time points (around
1 second) of neural activity at a time, in order to quantify
the earliest decoding time (see Methods). Figure 2A shows
the classification accuracy in an example session, using the
entire neural data. We see that the behavior classification
accuracy is highest around lever pull. Using RNNs, the
behavior can be classified significantly above chance up to
several seconds prior to the lever pull. We also see that RNNs
significantly outperform SVMs in several time windows. We
also used Long Short-Term Memory networks (LSTMs) to
perform the classification, with similar results as the RNNs
(not shown). Figure 2B shows the accuracy curve in another
example session for the RNNs as compared to the SVMs,
and we see that the RNNs perform similar to SVMs for most
time periods. Thus, RNNs either significantly outperform or
are comparable to SVMs for classification. Next, we show
the earliest decoding time in Figure 2C. We used multiple
hypothesis correction to correct the p-value of a one-tailed t-
test at each time window before ‘lever pull’, and we defined
the earliest decoding time as the earliest time point that is
significantly above chance level (p < 0.05) as this represents
the first time point that can be reliably decoded above chance.
For example, in Figure 2A, the earliest decoding time using
RNNs is �4.5s since this is the first time window after
which we can consistently decode significantly above chance.
On the other hand, for this session, SVM has no earliest
decoding time, thus 0s is considered as the earliest decoding
time since the behavior happened in this time window. We
see that, in these sessions, the RNN classifiers were able
to accurately predict the behavior (above chance), earlier
than the SVMs. Finally, we compare the accuracy using
RNNs as compared to SVMs by showing the area under the
accuracy curve (AUC) in Figure 2D for ten different sessions
of M1 performing the same task. We consistently see that
RNNs perform either comparably or with a higher accuracy
than SVMs, presumably because RNNs explicitly take into
account temporal structure in the model, and allow for a
nonlinear representation while classifying. Note that SVMs
have certain advantage in computational time: training an
SVM classifier takes several seconds, as compared to training
an RNN which can take several hours. As an example, it took
14 seconds to train an SVM classifier for the session shown
in Figure 2A, as compared to 2 hours and 2 minutes to train
the RNN.

We next considered the optimal length of temporal se-

Fig. 4. Visualization of the trained RNN on the simulated dataset by using
PCA, LDA, and temporal score. (A) 1st PC of the RNN activity h, with
inputs as the data from ‘behavior’ and ‘control’ test trials, the top color bar
shows the temporal score: decoding accuracy at each time of classification;
(B) LDA performed on the RNN activity at each time point, with the RNN
activity h projected into the maximally differentiating LDA subspace.

quences for classification: taking too few time points may not
adequately capture the relevant neural activity for classifica-
tion purposes, and too many time points may encounter the
limits of memory processing in the RNN. In Figure 3A, we
show the relationship between the length of input sequence
and the classification accuracy for the widefield activity
dataset on validation data. Here, the models are trained on all
trials from the 10 sessions from M1. We see that the accuracy
is comparable across the different time window lengths, and
a time window of 150 time points (around 5 seconds) is
considered as the optimal time window length. Due to their
higher validation accuracy, we focus on RNNs trained on
input data of length 150 time points in Sections III-B, III-C
and III-D.

Lastly, we considered the length of time window to
occlude in the data in order to obtain a considerable decrease
in classification accuracy. This inherently depends on the
temporal correlations in the neural data itself. In Figure 3B,
we plot the score sum S̄t by occluding data from all regions in
time windows (wT ) of length 5 to 25 time points, in a sliding
window approach. Based on this analysis, we choose 15 time
points to be the window size wT that we can use to explore
the importance of features in the time domain (Section III-
C), since we see a clear increase in S̄t for wT � 15 time
points.

B. Classification Mechanisms using RNNs

An RNN was trained to classify the ‘behavior’ vs. ’control’
trials in the simulated dataset (an example trial is shown in
Figure 6A). We find that the classification accuracy using
the RNN is 95%, comparable to that using SVM (99%).
In order to visualize the trained RNN nodes’ activity (h(t))
succinctly, we apply principal component analysis (PCA) to
h(t) and show the evolution of the 1st dimension in Figure
4A. The RNN trajectories starts to diverge between the two
classes at an early time, and at around 140 time points in
the first PC, the two trajectories from the two classes start
to diverge quickly. In Figure 4B, we show the RNN activity
after performing LDA at each time point; the RNN activity
of two class are well separated from early in the trials. The
temporal score reflects that the performance of RNN starts to
improve only at the end of sequence, around 140 time points
in Figure 4A. Thus, the divergence in activity between the
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Fig. 5. Visualization of the trained RNN on the widefield dataset by using
PCA, LDA, and temporal score. (A) 1st PC of the RNN activity h, with
inputs as the data from ‘behavior’ and ‘control’ test trials, the top color
bar is the temporal score: decoding accuracy at each time of classification;
(B) LDA performed on the RNN activity at each time point, with the RNN
activity h projected into the maximally differentiating LDA subspace.

two classes (further accentuated using LDA in Figure 4B)
does not exist in the output nodes until close to the final
time step T , at which point the information moves from
the memory to the output nodes and the classification is
performed.

To analyze the classification mechanisms in the widefield
neural data, an RNN was trained on the data from one session
in M1 with 54 ‘behavior’ trials and a matched number of
control trials. Here, we consider a 150 length time window
centered at lever pull, as suggested by Figure 3A. Again,
we apply PCA to h(t) and show the evolution of the 1st

dimension in Figure 5A (capturing 41% of the variance).
While the PC does not start to diverge between the two
classes until just before 2 seconds after the lever pull, we
see that there are dimensions captured by LDA (Figure 5B)
that show the difference in the RNN activity between the
two classes from early on in the trial. We also visualize the
temporal score of the RNN with the last timepoint accuracy
of 0.94, and we see that the RNN has a high classification
accuracy only near the end of the time sequence. Thus,
the same principal applies as in the simulated dataset: the
output nodes do not encode the information about the two
classes until close to the final time step T , at which point
the information moves from the memory nodes of the hidden
layer to the output nodes.

C. Quantifying the contribution of different regions
In Figure 6, we show the importance matrix of simulated

data by occluding different regions in time and region domain
(see Methods for details). The matrix recovers the structure
built into the trials, i.e., that the consistent presence of the
peaks in different dimensions at sequential time windows

Fig. 6. (A) Example ‘Behavior’ trials for the simulated dataset. (B)
Example ‘Control’ trials for the simulated dataset. (C) Importance matrix
for the simulated dataset.

Fig. 7. Importance matrix of various regions vs time in two difference mice.
M1: (A)(B); M2: (C)(D); (A)(C): Importance matrix of 32 sub-regions vs
time; (B)(D): Importance matrix of 7 regions vs time. The dashed vertical
line represents onset of the lever pull behavior. Here, Frontal Pole: FRP1;
Motor: MOp1, MOs1; Somatosensory: SSp-n1 to SSs1 and Pa5; Auditory:
AUDd1, AUDpo1; Visual: VISal1 to VISpor1, VISa1, VISrl1; Cognitive:
ACAd1 to RSPv1 and TEa1; Olfactory: olfactory areas and MOB.

determines which class is output. Next, we examine the
results while applying this method to our widefield neural
activity dataset.

In Figure 7, we illustrate the temporal importance of dif-
ferent brain regions while classifying the behavior in single
sessions of two different mice (M1 and M2) performing
the same self-initiated behavior. Here, wT is 15 time points
(0.5s), and the darker color signifies that the relevant region
is more important in that time window. The sessions we used
for M1 and 2 both had 54 ‘behavior’ trials and 54 ‘control’
trials in the sessions. We trained separate RNNs on the data
from M1 and 2; they had a non-occlusion decoding accuracy
S of 0.87 and 0.73, respectively. Many sub-regions in the
somatosensory and cognitive cortex show higher importance
in decoding the behavior (Figure 7A,C). However, we see
that the importance of any one region is quite small in the
widefield dataset since movement signals may be encoded
across the entire brain [2], [3]. The acronyms used in Figure
7A,C are defined in [19]. For M1, the most important region
is primary somatosensory area, lower limb, layer 1 (SSp-
ll1) at 0 to 0.5 second before the initiation of lever pull,
perhaps showing expected somatic signals. For M2, the most
important signal is in the retrosplenial area, ventral part, layer
1 (RSPv1) at 1.5 to 2 second after lever pull, perhaps due to
reward consolidation after the behavior is carried out. Figure
7 shows considerable variability across mice in the regions
that are important for classification.

Next, we combined the sub-regions together as regions
with similar function in Figure 7B,D. Here, the regions have
different numbers of sub-regions, i.e. wR varies across the
brain regions. Note that it may be the case that a region
shows a high level of importance, but none of the sub-
regions are important, implying that the signals in the sub-
regions contain redundant information. In Figure 7B, the
somatosensory region at 0.5 to 1 second before lever pull
is most important, and in Figure 7D, the cognitive region
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Fig. 8. Visualization of RNN activity by using PCA, LDA and temporal
score with model of returning sequences in RNN layer. (A) 1st PC of the
RNN activity h, with inputs as the data from ‘behavior’ and ‘control’ test
trials, the top color bar is the temporal score: decoding accuracy at each
time of classification; (B) LDA performed on the RNN activity at each time
point, with the RNN activity h projected into the maximally differentiating
LDA subspace.

at 1.5 to 2 second after lever pull is most important. Thus,
in M1, the time periods before behavior seem to be more
important for classification, reflecting the importance of the
planning phases of the behavior, whereas in M2, the regions
that show activity in reaction to the movement seem to be
more important towards classification. We also computed the
importance matrix by using SVMs, but the importance of
different regions is not as obvious as when using RNNs.
This is mainly due to the high correlations in the input data,
and SVM applies very similar weights to high correlation
features [20].

D. Predictive Classification
In order to highlight the predictive capabilities of the RNN,

we output a class at every time step ct , and the total loss is
amended to be the sum of the loss at each time point. We
show the ability of the RNN to continuously classify the
behavior in Figure 8. Note that this falls outside the scope
of an SVM classifier. Here we consider a 150 length time
window from 5s before lever pull to the onset of lever pull,
in order to quantify the ability of the RNN to predict before
the movement occurs. Here, the 1st PC captures 79% of the
variance in h and the RNN activity starts to consistently
diverge between the two classes as early as 5s before lever
pull. The temporal classification accuracy increases to a high
level immediately, unlike in Figure 5A, and plateaus until the
end of the sequence. However, the accuracy at the last time-
point is 0.75. Therefore, the output nodes are able to encode
the information about the two classes from an early stage
when they are forced to predict early, but the final accuracy
is seen to be lower.

IV. CONCLUSIONS
In this study, we used RNNs to explore behavioral clas-

sification using brain activity, and the effect of different
brain regions at different times on the classification results.
We showed that RNNs are comparable to or outperform
SVMs at classification. Using dimensionality reduction, we
visualize the RNNs mechanism of classification. Using a
novel widefield neural activity dataset, we concluded that the
self-initiated behavior can be predicted up to several seconds
prior to action in mice, and that the somatosensory cognitive
regions of the mouse cortex are important in decoding
this behavior. In the future, we aim to develop methods

to combine the activity of different sessions to develop
across-session classifiers, and further analyze subject-to-
subject variability. Additionally, we aim to develop methods
to improve the classification accuracy while the network
performs continuous classification, i.e. to devise networks
that predict as accurately and as early as possible.
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