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Abstract— As neuroimagery datasets continue to grow in
size, the complexity of data analyses can require a detailed
understanding and implementation of systems computer science
for storage, access, processing, and sharing. Currently, several
general data standards (e.g., Zarr, HDF5, precomputed) and
purpose-built ecosystems (e.g., BossDB, CloudVolume, DVID,
and Knossos) exist. Each of these systems has advantages and
limitations and is most appropriate for different use cases. Using
datasets that don’t fit into RAM in this heterogeneous environ-
ment is challenging, and significant barriers exist to leverage
underlying research investments. In this manuscript, we outline
our perspective for how to approach this challenge through
the use of community provided, standardized interfaces that
unify various computational backends and abstract computer
science challenges from the scientist. We introduce desirable
design patterns and share our reference implementation called
intern.

I. INTRODUCTION

In response to the growing number and size of large-
scale volumetric neuroscience datasets, the community has
developed a diverse set of tools and storage frameworks that
balance ease of data manipulation and storage with efficiency
and cost. These tools are often purpose-built, and feature
team- or task-specific features that make them particularly
well-suited for their host projects, such as version control,
cloud-native implementations, efficient caching, multi-tier
storage, targeted annotation or proofreading tasks and more
[1], [2], [3], [4]. Historically, this has been advantageous, as
it has enabled teams to develop tools quickly and effectively
to address unique research challenges. This diverse ecosys-
tem, however, has also led to community fragmentation and
interoperability challenges because research organizations
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rely on standards for data storage and access that are often
incompatible. As scientific questions continue to grow in
ambition and scope, it is increasingly important that scientists
are able to easily analyze, collaborate, and share their data
using consistent formats and data-storage engines.

Though it is tempting to develop prescriptive data for-
mats and standards, the fast-moving pace of the big-data
neuroscience field — as well as the need for backward-
compatibility with ongoing and past projects — will com-
plicate the process of standardization. Instead, it is more
feasible to standardize in abstraction: Rather than developing
common data formats, it is more effective to build common
data access strategies which can be applied to a variety of
underlying datastores, file formats, and interfaces.

In response to collaborations that span data sizes from
megabytes to petabytes, and that span institutional, interna-
tional, and interdisciplinary boundaries from neuroscience
to computer science to graph theory, interfacing tools are
critical to reducing barriers for new and experienced sci-
entists and enabling existing algorithms to scale to big
data challenges. Data access toolkits and analysis tools
(e.g., neuPrint [5], CloudVolume [6]) provide well-integrated
solutions for their use cases.

We have developed intern, a Python client library for neu-
roscience data access. intern simplifies data transit between
industry-standard data formats, and exposes a consistent and
intuitive API for end-users so that code for an analysis
performed on a dataset in a particular datastore format may
be trivially ported to other datasets and datastores (i.e.,
ecosystems).

We explain our architecture and implementation details,
and share several use cases common to scientific analysis
which are simplified through the use of intern. We believe
that this tool is helpful in providing seamless solutions
when switching between cloud native, local, and file-based
solutions, and offers an extensible software-design paradigm
as new solutions are developed.

II. BACKGROUND
Most connectomics data management tools act as either a

data-storage tool, which manages the (long-term) preserva-
tion of data, or a data-access tool – which enables an end
user (whether human or automated) to access and interact
with the data.

A. Data Storage Tools
Though many biological science disciplines rely on lo-

cal, single-file data storage systems (e.g., HDF5, multipage
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Fig. 1. The intern Python library acts as a shock absorber to provide a consistent API to researchers, tool developers, and other users. A community-facing
data-access tool should operate on all major data-storage systems (including CloudVolume, DVID, and BossDB), and remain flexible enough to enable
common use cases (such as visualization, data upload/download, and data proofreading) without sacrificing performance.

TIFFs), the field of connectomics realized the need for
reproducible, shareable, scalable datastores early in its evo-
lution. These datastores are persistent, performant servers of
volumetric data, and are often centralized into repositories
holding information from multiple experiments and labora-
tories [2], [1], [3], [6], [4]. As the size of data increased,
these datastores specialized in returning subvolumes of data
based upon 3D user queries, rather than trying to transmit
full datasets. Almost all of the most widely-used data storage
tools now leverage chunked storage [7], an access-efficiency
paradigm borrowed from domains such as astronomy and
GIS [8]. This enabled databases to increase their bandwidth
and serve more data-requests per second, because each
subvolume could be accessed in parallel, reducing the file
input/output and hard-drive read-speed bottlenecks.

Eventually, some datastores, including BossDB [1] and
CloudVolume [6], moved to cloud storage systems such as
Amazon AWS S3 [9] or Google Cloud Storage (GCS) [10].
These systems abstracted file-access even further and enabled
high-speed network read- and write-operations, at the cost
of renting — rather than owning — data storage space.
While tools such as Knossos or DVID may be run on cloud

resources as easily as on local compute infrastructure, other
datastores such as BossDB are cloud-native, meaning that
they fully leverage the scalability and parallelism of cloud-
compute and serverless resources, and cannot be run on
conventional compute hardware.

Data storage tools can be classified into two other large
categories: Those with server-side compute resources, and
those without. Tools like DVID, BossDB, and Knossos use
devoted compute resources that perform functions such as
mesh generation, cache management, and access-control au-
thorization. Systems like CloudVolume or zarr-backed data-
stores require much simpler infrastructure to run, but cannot
perform processes such as skeleton- or mesh-generation
without client-side compute resources.

B. Data Access Tools

Some researchers may feel comfortable accessing data
directly from one of the storage tools listed above (e.g., via
RESTful services or object-level access), but most prefer to
interact with the data through more familiar and intuitive in-
terfaces, such as a Python library or a web interface. Almost
every data storage tool mentioned above has its own devoted
data access tool: DVID has Go and Python libraries; data
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stored in the precomputed format may be accessed with the
cloud-volume Python library. BossDB may be accessed with
either cloud-volume or intern Python libraries. A common
frustration in the connectomics community is that with only
a small handful of exceptions, though the underlying data
may be the same in several data storage tools, most access
tools are only capable of reading from their “partner” storage
tool, and the interfaces vary in complexity and format. In
order to integrate data and tools from our collaborators,
we expanded our initial data access tool intern to support
more data formats as well as more data storage systems, in
a Resource-based system (Fig. 1). intern’s architecture was
expanded to communicate with CloudVolume-accessible vol-
umes, DVID-hosted datasets, and several other commonly-
used data storage tools and formats.

Additionally, we believe that in order to enable cross-
institutional collaboration in the community, it is important to
bridge the gap between those data storage tools with server-
side compute and those without. For this reason, we also
introduced a Service-based system into intern that enables a
user to run surrogates for the server-side processing tools
of one data-storage system using the data from another.
For example, we want a user to be able to request mesh
representations of data from BossDB — a tool that supports
server-side mesh generation — as well as from CloudVolume
— a tool that supports client-side mesh generation — as well
as from a dataset residing in a zarr archive in AWS S3 — a
storage technique that does not support mesh generation at
all. That these three tools differ in how their meshes may be
generated should not matter to an end-user: The user should
be able to use the same syntax to request mesh data from all
of them with only minimal code changes.

Finally, we wrote intern to be easily extended to addi-
tional use cases and features as scientific needs grow. We
believe the underlying design principles are common to
many research questions and have value beyond the specific
implementation described here.

C. The Connectomics Data-Access Ecosystem

When considering the data storage engine for a particular
scientific question, several different factors should be consid-
ered, which we summarize as data size, versioning, authen-
tication and user management, cloud services, performance,
and accessibility/sharing. Each tool has a user community
and powerful feature-sets: File-based solutions are simple
and easily portable and understood, but are difficult to
access and analyze by communities. CloudVolume excels in
portability and simplicity, but does not provide user accounts,
differential permissions, or data management services. DVID
offers an excellent solution for terascale solutions and fast,
efficient data-versioning, but does not leverage cloud-scale
capabilities. BossDB is a managed cloud-native service with
user permissions, access control, and a robust storage engine
tested to hold and process petabytes of data, but cannot
run locally and requires more infrastructural complexity than
many research labs may have the expertise to maintain.

Although for the uninitiated these storage solutions may
seem to introduce unnecessary complexity, managing and
manipulating such large datasets and corresponding analysis
derivatives (e.g., metadata) requires advanced technology.
The intent of the paradigm introduced in this paper is to
abstract from the user all of the challenges introduced by
the scale of the data in order to allow methods to be easily
run on these data while minimizing impedance mismatches.

III. METHODS

Our intern library implements the philosophy of abstract-
ing computer science requirements by offering consistent
data access trait interfaces, which are categorized into Ser-
vices, Resources, and Remotes. This system of abstraction
acts as a shock absorber to differing data formats, data
processing, and tool functionality, and serves to enable repro-
ducible and extensible connectomics analysis. We describe
our intern reference implementation, and explore how other
tool-developers may choose to expand intern or develop their
own community-ready software using the same paradigm.

A. Architecture

As the field of connectomics evolves rapidly, a library
must strike a balance between accessibility and adaptability.
We designed our toolkit such that even minimal coding skills
and copy-pasting of simple design patterns can be leveraged
to reduce user burden. As the community continues to for-
malize use cases and data storage paradigms, programmatic
workflows like SABER [11], LONI [12], Luigi [13], or other
workflow managers [14], [15], [16] may allow for additional
simplification and can directly leverage these functions. Point
and click graphical interfaces may also follow.

In order to facilitate extension of the intern Python library
by the community, we have published extensive online
documentation for both software engineering beginners as
well as professionals. The library is split into three types of
trait-based interfaces; Remotes, Resources, and Services.

1) Remotes: Remotes represent data storage tools, such
as databases, on-disk chunked or non-chunked files, and
other providers of volumetric-data access APIs. A Remote
must at least allow the retrieval of volumetric data, and
may allow upload, manipulation, user permissions, or project
management as well.

2) Resources: Resources are pointers to atomic units or
groupings of data from a Remote. For example, in the hierar-
chical BossDB data paradigm, the BossResource implemen-
tation interfaces with a CollectionResource, an Experimen-
tResource and a ChannelResource [1]. In the DVIDRemote
implementation, a DataInstanceResource points to a specific
dataset at a specific version in its history.

3) Services: Services are features or manipulations that
act upon data retrieved from a Remote. Services either call
upon the server-side compute of a Remote, or instead a
Service may implement a standalone local algorithm that
can act as a surrogate for a Remote that does not have a
service available. For example, a CloudVolumeRemote has an
associated CloudVolumeMeshService that invokes the built-in
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cloud-volume meshing functionality, but a ZarrRemote may
use a locally-executed MeshService with the same API.

Provided the underlying data are the same, the output from
different Services will be consistent (give-or-take obvious
differences in performance/timing or scalability, as well as
differences in parameters). In this way, raw image data
from any database (i.e. Remote) can be treated the same;
segmentation from any database can be treated the same;
and annotation byproducts can be treated the same.

B. Performance and Design Considerations

Due to the chunked-storage approach used by large-scale
volumetric datastores, intern was developed with an intention
to maximize the performance of the underlying datastores
by optimizing Remote-specific parameters such as chunk
size, parallelism, and data compression. Chunk size, or
the amount of data downloaded in a single request, has a
significant effect on end-to-end performance for download-
ing and uploading data. Default chunk size for BossDB
downloads were empirically derived to reduce latency for
the user. Ideally, data chunk sizes should be optimized per-
remote, and ideal cutout sizes may vary based upon client
resources such as network throughput or compute (Fig. 2).
Furthermore, intern utilizes parallel downloading in order
to saturate client bandwidth without causing bottlenecks at
the data decompression or reconstitution stage. Convenience
features consolidates the extract, load, and transform data
pipeline into a few straightforward functions.

C. Use Cases

1) Transferring data between Remotes: Since Remotes
provide unique task-specific capabilities that are exclusive
to a particular data store or data type, a common use-case of
intern is to transfer data between remotes to leverage their
unique capabilities.

For example, DVID provides best-in-class data-versioning
of large scale image segmentation, and it may be preferable
to use DVID for this sort of data-versioning rather than try
to replicate this feature in other datastores. Volumetric data
that is stored in, e.g., BossDB can be downloaded from
the cloud for local processing and uploaded into a DVID
repository using intern. Once the proofreading is completed,
the final annotated data can be re-uploaded to BossDB in
order to be cached internationally and served publicly. We
note that certain data storage tools, such as BossDB, have
high-throughput ingest systems available [1], which may be
faster than an intern-based data transfer, but which are not
available in all remotes. Additionally, users may wish to only
work with a portion of a dataset, in which case ingestion
services may be overly complex.

2) Shock-Absorption: Though such software abstractions
place an additional engineering burden on developers, we
assert that developing flexible, ecosystem-agnostic tools is a
fundamental need of the dynamic connectomics community
in lieu of more formal data-standards. To meet this require-
ment, we developed intern with such flexibility in mind:
intern acts as a “shock-absorber” for common connectomics

A.

B.

Fig. 2. Many factors impact data download rate. As an illustration, we tuned
the chunk-size parameters for parallel- and non-parallel downloads from
the BossDB remote. A. Performance was impacted by client-side compute
speed (for data decompression) as well as network throughput, illustrating
possible avenues for further abstraction of other remotes. B. Chunked data
stores benefit from data requests that are aligned to the cuboid subdivisions
in the server backend. This effect is more pronounced in filesystem-based
data-stores such as CloudVolume or Zarr, as the cuboid periphery must
be downloaded and cropped on local compute resources. In contrast, data
stores with cloud-side compute (such as DVID or BossDB) can perform
this cropping operation prior to data download, and so the additional egress
burden is not incurred.

use-cases by implementing database-agnostic Services (e.g.
mesh generation, skeleton generation, segmentation proof-
reading), which can run regardless of data source. An intern
Service definition includes a list of its required Resources,
and any Remote or other data-source that meets this interface
can run the Service.

As a concrete example, a local marching-cubes Mesh-
Service converts 3D segmentation to OBJ- or precomputed-
formatted meshes. This Service requires only a VolumeRe-
source provider, and so it can run on, for example, a
BossRemote, a CloudVolumeRemote, or even, e.g., on a raw
ZarrVolumeResource.

This approach enables the end-user to reproducibly run
the same analysis code, changing only one line to specify
from where the data should be pulled. In other words,
a user may confidently change a line of code from
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BossRemote#mesh(id) to DVIDRemote#mesh(id),
regardless of whether the data-sources themselves support
the meshing operation. The provenance of these operations
may be stored alongside the data products, in order to aid in
future reproducibility.

3) Local Data Caching: Like many projects in the big-
data neuroscience community, one of the most painful bot-
tlenecks in much of our work is the speed with which
data can be uploaded and downloaded from user-facing
machines for visualization and analysis. In order to mitigate
this challenge, we developed Bossphorus, a data relay that
uses intern to fetch data from “upstream” data storage
tools in their respective dialects and which serves data
“forward” in the BossDB-flavored REST API dialect [1].
As a result, Bossphorus instances can be daisy-chained as a
multi-tier cache. This enables an end-user to quickly browse
data from a variety of sources with low latency, even if
the datastore in question does not support caching. With
a Bossphorus instance running locally using our publicly
available Docker image, or a Bossphorus instance running
on on-premise hardware at an academic institute (or indeed
with both running in series), a user can interactively browse
large volumes of data from multiple data sources with sub-
second latency. This enables realtime data manipulation and
visualization. intern’s interfaces are designed to be highly
compatible with common data-science tools like numpy[17]
and pandas[18]; popular data standards like DataJoint [16];
as well as visualization tools such as neuroglancer[19],
substrate[20], matplotlib[21], and plotly[22].

4) Processing: Tool and algorithm developers commonly
target specific data storage ecosystems in order to reduce
the burden of supporting several disparate ecosystems and
data-standards [23], [11]. By leveraging shock-absorber tools
like intern, algorithm developers can write code once and
deploy it to a variety of datastores. As a proof of concept, we
adopted a synapse-detection algorithm based upon the U-net
architecture [11], [24]. This algorithm Service targets data
downloaded from an intern VolumeResource, which means
that it is trivially portable to data downloaded from any
supported volumetric data storage service. One advantage of
tightly coupling volumetric data access with such machine
learning algorithms is addressing the challenge of stitching
subvolumes of data together. Using intern for data manage-
ment helps address this problem by storing data products in
the cloud, rather than in task-specific cache files or on users’
drives.

Just as tool designers can use intern to develop and test
their software, the intern Python library is production-ready,
and is verified to work at petabyte scale. We believe that
reproducible and repeatable algorithm design extends past
tool-design, and continues to be a fundamental aspect of
responsible computational science in public-facing research.
Flexible tools like intern equip peer institutes and collabo-
rating researchers with the ability to quickly and accurately
reproduce, verify, and build upon scientific claims.

5) Visualization and Meshing: The Remote, Resource and
Service based architecture allows all Remote data-stores to

Fig. 3. Using the intern library, we downloaded nanometer-resolution 3D
imagery and pixel segmentation from the public Witvliet 2020 et al. dataset
on BossDB [25]. We then used the meshing service to produce 3D mesh files
for visualization in 3D software such as Blender or Neuroglancer. Pictured
here is Dataset 2, a C. elegans nematode brain imaged during the L1 larval
stage.

benefit from all implementations of Services. An example of
this is intern’s MeshService, which allows users to generate
meshes using local compute resources. Any Remote that
implements volumetric data retrieval as a VolumeResource
(namely, all currently implemented Remotes) will automat-
ically have this meshing capability. Due to this trait-based
architecture, any future Remote implementation for new
databases or data standards will likewise have this meshing
capability without any further development required.

Any Service can also be used independent of the rest
of the intern library. The MeshService described above, for
example, will produce a Mesh object when passed a volume
of 3D data either as an ndarray or as a VolumeResource
(Fig. 3). This mesh object can then be converted into the
common obj format or into the Neuroglancer precompute
format [19].

While we have provided a simple, Python-native, CPU-
based marching-cubes implementation, the user community
is encouraged to package other specialized or distributed
meshing or post-processing algorithms in the same Service-
based class interface. Tools written to meet this specification
will likewise be applicable to data from any data storage tool
supported by the tool.

IV. DISCUSSION

In this work we highlight data accessibility, a com-
mon challenge in contemporary computational neuroscience,
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which has become particularly acute as data volumes grow
in size and data ecosystems proliferate. New and experienced
users will benefit greatly by adopting the concept of a
computer science shock-absorber, which we illustrate in
our solution (intern). Such tools are particularly valuable
in domains such as connectomics, where cross-institutional
collaborations and data reuse are not only common but
increasingly necessary. Other complementary APIs and soft-
ware libraries also exist to support approaches in the field
and are well-suited for particular ecosystems and workflows.
Many of these tools offer solutions that abstract many of the
most challenging and repetitive aspects of large scale neuro-
science discovery and also avoid common errors of interpre-
tation. This is especially important to broaden accessibility
of large, publicly-funded datasets for secondary analysis,
including by new members of the community or those with
complementary expertise (e.g., machine learning, statistical
modeling). This work directly addresses the retrieval of
volumetric data products but not object-level metadata such
as synapse or neuron attributes, or the algorithms used
to create derivative data products; these aspects are also
important to consider when building standardized analysis
workflows. Furthermore, as the user demand for such tools
increases, we will continue to mature implementations of
intern in other commonly used data science languages, such
as Julia, R, and Node.

By developing user-facing tools such as intern that are
flexible and provide an integrated interface to key community
data storage systems, the connectomics community will be
able to greatly benefit from shared, collaborative science, as
well as large-scale, public, easily-accessible data.
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