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Abstract— Biomarkers are one of the primary medical signs
to facilitate the early detection of Alzheimer’s disease. The small
beta-amyloid (Aβ) peptide is an important indicator for the
disease. However, current methods to detect Aβ pathology are
either invasive (lumbar puncture) or quite costly and not widely
available (amyloid PET). Thus a less invasive and cheaper
approach is demanded. MRI which has been used widely in
preclinical AD has recently shown the capability to predict
brain Aβ positivity. This motivates us to develop a method, SDF
sparse convolution, taking MRI to predict Aβ positivity. We
obtain subjects from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) and use our method to discriminate Aβ positivity.
Theoretically, we provide analysis towards the understanding
of what the network has learned. Empirically, it shows strong
performance on par or even better than state of the art.

I. INTRODUCTION

By 2050, 1 out of 85 people worldwide will be affected by
Alzheimer’s disease (AD) [3]. Degenerative diseases have put
a great burden on worldwide healthcare systems in terms of
cost and therapies [22]. The small beta-amyloid (Aβ) peptide
is one of the major histopathological hallmarks of the disease
[10] and found promising for early detection of AD. Current
amyloid measures are either invasive or too expensive. Even
Blood-based biomarkers (BBBs) are developed for screening
Alzheimer’s disease, only weak or no correlation is found
with the estimate of brain amyloid positivity and [2] BBBs’
usefulness for differential diagnosis and prognosis is unclear
[11]. On the other hand, sMRI is widely available in clinical
practice. Therefore, there is a strong interest to develop new
techniques which predict amyloid burden with sMRI analysis.

Recently, prediction of brain amyloid with structural MRI
received growing interest because of its wide availability and
non-invasive nature. Traditionally, brain image biomarkers
[25] use cortical or sub-cortical structure volume. Recent
works demonstrate that surface-based brain imaging biomark-
ers ourperforms such volume measures because it overcomes
partial volume effects. A example is the radial distance
mapping extracted on biomarkers is applied to segment the
hippocampus [1].

Meanwhile, deep model succeeded in many areas [7],
including image recognition [24], 3D object classification
and segmentation [19], and biomedical segmentation [21].
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Fig. 1. The visual comparisons among different data formats to
represent a 3D object. (b) shows the vertices on the mesh in (a). (c)
shows the points sampled from vertices in (b). Details of sampling points
from vertices are in section II-B.2. For (d) and (e), the red dots present the
points outside of the mesh, and the blue dots present the interior points. (e)
shows the cross-sections of (d) along the axis perpendicular to the paper.

However, due to different structure, regular grid based
conventional CNN is hard to be directly applied to surface
manifold. Most of pioneering work are designed on point
cloud [20], [19]. This data format provides efficiency while it
loses some intrinsic geometry information which is demanded
in discovering subtle brain shape features.

In this work, we propose SDF sparse convolution to address
these problems. The inspiration comes from the success of
using deep neural network generating SDF and the inherent
sparse nature of SDF. The ability to generate high quality
3D objects with SDF demonstrates that the deep neural
network has the potential to analyzing SDF. And using sparse
convolution to analyze SDF is a feasible approach. This
motivates us to introduce this work which is designed to parse
SDF instead of other 3D data formats for brain diagnosis.
Our work has two contributions. (1) To our knowledge, this
is the first paper using deep neural network to classify SDF
on brain image biomarkers. (2) We propose and demonstrate
an effective and standard schedule for using deep learning
for 3D biomarkers.

II. METHOD

We take the hippocampus as a composition of two 2D
manifolds (figure 1). Our work is to extract features on the
signed distance field (SDF) of the hippocampus with sparse
convolution [8], [9] to classify it. We first propose our SDF
sparse convolution and the network architecture that could
learn features on a field instead of a 2D manifold. Finally, we
briefly explain two baselines used to classify the hippocampus,
a commonly-used method that leverages the hippocampus’
volume, and a state-of-the-art 3D object recognition deep
learning approach.
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(a) SDF (b) Sampling (c) Point Cloud (d) Another line

Fig. 2. Comparison between SDF and Point Cloud. (a) is an example
of SDF, in which the yellow line represents the surface. The color in (a)
shows the distance from the surface. (b) shows sampling a point cloud (c)
from the surface. (d) is another possible underlying surface reconstructed
from (c).

A. SDF Sparse Convolution

1) Signed Distance Field: A signed distance field is one
of the representations to implicitly define the `-level set as a
Lipschitz surface S ∈ R3.

S = {p ∈ R3|fS(p) = `} (1)

fS is a function that maps R3 to R. There are two popular
implicit functions, occupancy function fOCC

S , and signed
distance function fSDF

S .

fOCC
S (p) =

{
1 p ∈ Sint

0 p 6∈ Sint

(2)

fSDF
S (p) = (2fOCC

S (p)− 1)distS(p) (3)

The signed distance function consists of the occupancy
function and the distance function distS(p) which computes
the shortest Euclidean distance from point p to the surface S.
Also, using algorithms like ray casting [13] or marching cubes
[16] could retrieve the surface from the implicit function.

Some works [5], [17], [14] use deep neural networks
to generate 3D shapes via a implicit function. They have
achieved competitive performances on the 3D shape gener-
ation. However, analyzing SDF remains an open problem.
In figure 2, we show the difference between SDF and point
cloud in analyzing the underlying surface. Moreover, using
a point cloud could lead to a potential misunderstanding of
the underlying surface. Therefore, providing an algorithm to
probe SDF can be thought of as exploiting the property of
SDF to disentangle the ambiguity.

2) SDF Sparse Convolution: As (e) shown in figure 1, the
sampled points from the SDF only occupy a small partition of
the field. The data represents SDF is inherently sparse. While
comparing to voxel data [28], it provides more neighboring
information. Sparse convolutional operation is customized
for these sparse data and could improve the computational
efficiency comparing to standard convolution applied on dense
data [9]. Meanwhile, it could also prevent from the dilating
observation in every layer.

In figure 3, we compare the basic feature extracting
operations in PointNet, sparse convolution, and SDF sparse
convolution. The operations we discussed on 2D space could
also be applied to a higher dimension. The bottom building
block of PointNet++ shares the same structure as PointNet.

f(p1, p2, ..., pn) = γ

(
max

i=1,...,n
{h(pi)}

)
(4)
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(a)PointNet (b) Sparse Conv

(c) SDF Sparse Conv

Fig. 3. The computation process of different feature extractors. (a) is
the core computation process for one layer inside PointNet and PointNet++.
(b) presents the sparse convolution on a 2D grid. (c) shows the process of
computing features on Signed Distance Field using SDF Sparse Convolution.
And SDF Sparse Conv has the power of distinguishing the inside and outside
of a surface.

The function f in equation 4 maps a unordered set of points
with pi ∈ R3 to a vector. γ and h are multi-layer perceptron
(MLP) networks. In PointNet, the feature extraction is based
on linear projection. The output feature would be smaller if
the kernel is similar to the input point cloud and vice versa.
Because what PointNet does is to sum the projected distance
of the input point cloud onto the kernel ((a) in figure 3).
This means that in order to learn variant features the learned
kernel should store as much dissimilar kernels compared to
the input pattern as possible. For sparse convolution and SDF
sparse convolution, the effect is different from PointNet. A
similar pattern of the learned kernel relative to the input
would generate larger (more significant) output features.

[f ~ g](p) =

qk∑
q=q0

f(q) · g(p− q) (5)

The set q0, q1, ..., qk contains the neighboring points of p
with a signal signed to it. Not all the neighboring points
of p are involved in the computation is the key to sparse
convolution. The function f is the kernel function and the
function g is the input function. Equation 6 is the function
g used in SDF sparse convolution and sparse convolution.
Thus the number of patterns to be learned from the network
would be potentially smaller comparing to PointNet and
PointNet++. As shown in figure 3 (b) and (c), comparing
to conventional sparse convolution, SDF sparse convolution
absorbs information from neighboring. Therefore, SDF sparse
convolution provides more information, such as the location
of the surface, the normal direction of the surface, and the
connection between sparse points, to enrich feature extraction
on 3D objects.

g(p) = fSDF
S (p) and g(p) = 1 (6)

3) Data Processing and Neural Network Architecture:
We sample 250000 points in a spherical space of the mesh
(figure 1 (d)) with 10% uniformly sampled in the sphere and
90% sampled near the surface with perturbation of points on
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Fig. 4. The architecture of SDF Sparse Convolutional Network. The
right part represent the SDF. The output of the network is a 2 dimension
vector represent the probability of Amyliod and Tau.

the surface by with a Gaussian N (0, 1) centered at 0 with 1
mm variance.

We implement the feature extractor as a VGG-like [24]
structure neural network. The detailed structure of the network
is shown in figure 4. The loss functions we use for training
PointNet++ and SDF sparse convolution is binary cross-
entropy loss.

We train the model from scratch by optimizing the cross-
entropy loss function using stochastic gradient descent for
100 epochs. In all our experiments, we use the Adam
optimizer [12] with a fixed learning rate of 10−4, β1 = 0.9,
β2 = 0.999, and ε = 10−8. Besides, the batch size is set to
4 and 10000 sampled points per object.

B. Baselines

1) Volume: After processing the meshes into watertight
[26], we compute the volume of meshes. Then we combine
Neighborhood Components Analysis (NCA) [6] with k-
nearest neighbors classifier [23] to classify the features.

2) PointNet++: Based on a pioneer work PointNet [20],
PointNet++ [19] achieves better results on recognition of
a point cloud than PointNet. To train PointNet++, we first
extract 60,000 vertices, (b) in figure 1, on the hippocampus
mesh. During training, we use Furthest Point Sampling (FPS)
[15] to sample 2500 points on these vertices to feed into
PointNet++.

III. EXPERIMENTS

A. Subjects

We use the ADNI database [18] for testing the performance
of baselines and our algorithm. We divide the combined
database into five classes according to the stage and the
positivity of amyloid biomarkers. The number of each class
and the number of training, validation, and test subjects are
listed in table I. We split the data set with the ratio of 80%
for training and 20% for testing. We further split the training
data into 80% to train the network and 20% for validation.

B. Training conditions

The hippocampus meshes have different properties from
the 3D objects in ShapeNet [4] or ModelNet [27]. One
aspect is the scale. 3D Objects in ShapeNet or ModelNet are
scale-invariant. But for hippocampus meshes, the scale is an
important criterion to judge whether the brain is suffering
atrophy. Another aspect is the data augmentation during

Group Total number Training Validation Testing
AD Aβ+ 151 96 24 31
MCI Aβ+ 171 109 27 35
MCI Aβ- 171 109 27 35
CU Aβ+ 116 74 18 24
CU Aβ- 232 148 37 47

TABLE I
THE NUMBER OF SUBJECTS CONTAINED IN OUR DATABASE.

Training data processing Validation Test
unit-scale & data augmentation (da) 80.3 62.8
unit-scale & no da 85.2 75.6
constant-scale & da 78.7 71.8
constant-scale & no da 85.2 78.2

TABLE II
DIFFERENT TRAINING DATA PROCESSING AND THEIR

CORRESPONDING ACCURACY. UNIT-SCALE MEANS ALL THE MESH DATA

HAS BEEN NORMALIZED INTO A UNIT SPHERE. CONSTANT-SCALE MEANS

THAT THE ORIGINAL RELATIVE SCALE IS KEPT.

training. There are three prevalent data augmentation methods,
randomly scale, randomly rotate along the gravity axis, and
small perturb of the locations. Each of them could increase
the robustness of a 3D neural network.

To decide how to utilize these two aspects, we have done
some experiments. The results are shown in the table II. We
compare the accuracy on validation and test with different
data-preprocessing and data augmentation during training.
The results show that without having scale information and
with data augmentation during the training the accuracy
decreases. For a tissue, like a hippocampus, randomly scaling
would obstruct the detection of atrophy, the rotation would
impede the already-done registration step, and perturbing
would destroy the local information for understanding the
tissue. From now on we have set all the training with the
same setting, keeping the relative scale and training without
rotation and perturbation augmentation.

C. Improvement over baselines

In table III, we compare the accuracy over three groups
and three methods. We split the data set into 10 folds and
take the average test accuracy of each method in each group.
Our proposed SDF sparse convolution Network outperforms
19 folds out of 30 folds over the other two methods.

D. Ablation study

To this end, we utilize group 1 as the benchmark to
compare the performance of different choices. We recognize
two important aspects of the network design, the input data
formats, and network operations. When using PointNet++
to analyze SDF, we randomly sample 2500 points from
250000 points in SDF to feed into the network. When using
sparse convolution to analyze a point cloud, we sample 10000
points from vertices of a mesh to feed into the network. In
table IV, the results show that PointNet++ could not exploit
SDF information comparing to the point cloud even SDF
could provide more information than a point cloud. And the
performance of sparse convolution drops from 77.2% to 70.9%
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Group AD Aβ+ vs CU Aβ- MCI Aβ+ vs MCI Aβ- CU Aβ+ vs CU Aβ-
Fold V P++ SDF SC V P++ SDF SC V P++ SDF SC
0 76.9 85.2/78.2 83.6/76.9 51.4 72.2/57.1 68.5/48.6 66.2 69.1/60.6 67.3/66.2
1 71.8 85.2/80.8 86.9/71.8 44.3 63.0/61.4 72.2/54.3 54.9 71.0/64.8 69.1/66.2
2 70.5 85.2/69.2 86.9/78.2 52.9 70.9/50.0 61.1/61.4 62.0 67.3/66.2 67.3/66.2
3 71.8 82.0/76.9 78.7/82.1 45.7 75.9/55.7 66.7/57.1 60.6 67.3/66.2 69.1/63.4
4 70.5 86.9/70.5 85.2/75.6 42.9 72.2/52.9 66.7/54.3 64.8 72.7/62.0 67.3/66.2
5 66.7 86.9/80.8 83.6/76.6 52.9 63.0/61.4 61.1/51.4 60.6 67.3/66.2 70.9/66.2
6 67.9 83.6/79.5 78.7/76.9 45.7 79.6/64.3 72.2/54.3 60.6 70.9/63.4 67.3/66.2
7 69.2 86.9/80.8 86.9/79.5 45.7 66.7/61.4 66.7/61.4 57.7 76.4/60.6 69.1/64.8
8 70.5 85.2/71.8 82.0/74.4 40.0 72.2/65.7 68.5/58.6 63.4 69.1/60.6 67.3/66.2
9 66.7 82.0/76.9 77.0/79.5 54.3 61.1/65.7 59.3/62.9 63.4 70.9/57.7 67.3/66.2
m/s 70.3±2.9 76.5±4.2 77.2±2.7 47.6±4.7 59.6±5.2 56.4±4.4 61.4±3.2 62.8±2.8 65.8±0.9

TABLE III
THE COMPARISON AMONG DIFFERENT GROUPS. V REPRESENTS THE

METHOD USING VOLUME (DETAIL IN SECTION II-B.1). P++ REPRESENTS

POINTNET++ (DETAIL IN SECTION II-B.2) AND SDF SC IS SDF SPARSE

CONVOLUTION (DETAIL IN SECTION II-A).

PointNet++ SDF PointNet++ Sparse Convolution SDF Sparse Convolution
76.5±4.2 69.5±4.9 70.9±5.0 77.2±2.7

TABLE IV
ABLATION STUDY ON DIFFERENT SETTINGS. THE EXPERIMENTS ARE

DONE ON THE AD Aβ+ VS CU Aβ- GROUP WITH 10 FOLDS.

when only takes a point cloud is the input to the network. The
combination between SDF and sparse convolution performs
best in all combination settings.

IV. CONCLUSION AND FUTURE WORK

In summary, our work is the first one using SDF-based
deep neural network to classify brain amyloid burdens.
The combination between signed distance field and sparse
convolution provides a new way of analyzing brain images.
We propose and demonstrate an effective and standard
schedule for using deep learning for 3D manifold data. In
the future, with more data being collected, the gap between
deep learning methods and traditional methods could become
larger and the performance drop between validation accuracy
and test accuracy could be smaller.
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