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Abstract— Biofeedback systems sense different physiological
activities and help with gaining self-awareness. Understanding
music’s impact on the arousal state is of great importance
for biofeedback stress management systems. In this study, we
investigate a cognitive-stress-related arousal state modulated
by different types of music. During our experiments, each
subject was presented with neurological stimuli that elicit a
cognitive-stress-related arousal response in a working memory
experiment. Moreover, this cognitive-stress-related arousal was
modulated by calming and vexing music played in the back-
ground. Electrodermal activity and functional near-infrared
spectroscopy (fNIRS) measurements both contain information
related to cognitive arousal and were collected in our study. By
considering various fNIRS features, we selected three features
based on variance, root mean square, and local fNIRS peaks as
the most informative fNIRS observations in terms of cognitive
arousal. The rate of neural impulse occurrence underlying
EDA was taken as a binary observation. To retain a low
computational complexity for our decoder and select the best
fNIRS-based observations, two features were chosen as fNIRS-
based observations at a time. A decoder based on one binary
and two continuous observations was utilized to estimate the
hidden cognitive-stress-related arousal state. This was done
by using a Bayesian filtering approach within an expectation-
maximization framework. Our results indicate that the decoded
cognitive arousal modulated by vexing music was higher than
calming music. Among the three fNIRS observations selected,
a combination of observations based on root mean square
and local fNIRS peaks resulted in the best decoded states
for our experimental settings. This study serves as a proof of
concept for utilizing fNIRS and EDA measurements to develop
a low-dimensional decoder for tracking cognitive-stress-related
arousal levels.

I. INTRODUCTION

Human emotions are convoluted structures processed and
regulated by the central nervous system (CNS). Stress is of
great importance to maintain a healthy and productive life.
One manifestation of stress emotion is the fight or flight
response that serves as a survival mechanism of a human
subject in threatening situations. However, an abnormal level
of stress could lead to serious mental disorders. For instance,
anxiety disorders, which can be defined as a heightened level
of activation in the sympathetic nervous system accompa-
nied with intense fear and worry, are considered to be the
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epidemic of the 21 century due to their high prevalence
[1]. Moreover, anxiety is responsible for detrimental conse-
quences on every aspect of a patient’s life, for example, loss
of jobs and relationships due to the adverse symptoms related
to anxiety, like difficulty concentrating and social avoidance
[2].

Stress as a psychological process cannot be directly mea-
sured, instead, it manifests itself through changes in the
patterns of physiological signals such as increased blood
pressure, heart rate, and sweating [1]. This idea lies in the
heart of the automatic emotion recognition field of research,
in which physiological signals are processed and analyzed
to infer the emotional state of a participant [3]. Biofeedback
systems are an example of the automatic emotion recognition
principle. Biofeedback systems sense different physiological
activities in real time and continuously send related informa-
tion back to the user. Such systems are of great importance
for users to gain self-awareness of their internal states and
to learn how they can maintain their physiological activities
in their healthy levels [4]. Furthermore, such systems can
be utilized in remote health monitoring, smart environments,
entertainment, and human-computer interface [5].

According to [4], stress-related biofeedback systems rely
mainly on heart rate variability (HRV), heart rate (HR),
respiratory (RSP), and electrodermal activity (EDA) mea-
surements to estimate stress levels. However, stress-related
biofeedback systems have not utilized functional near-
infrared spectroscopy (fNIRS) combined with EDA measure-
ments for cognitive-stress estimation. fNIRS is a relatively
new neuroimaging technique that uses near-infrared light to
capture the changes in oxygenated/deoxygenated hemoglobin
levels in the outer cortex of the brain [6]. fNIRS has been
utilized by Bigliassi et al. to explore the relation between
music and prefrontal cortex activation [7]. Also, several
mental workload studies have deployed fNIRS measurements
in their analysis [8], [9], [10]. Skin conductance (SC) is a
measure of EDA. Due to variations in the activity of the
sweat glands as a function of neurological stimuli generated
by the sympathetic nervous system (SNS), SC encodes
important information about the arousal state in the form of
fluctuations in the SC response (SCR) [11]. SC has been used
to detect stress in real-world driving tasks [12]. Additionally,
different machine learning algorithms have been utilized in
the domain of arousal estimation using SC measurements,
such as recurrent neural networks, regression trees, etc [5].

In this study, we take one further step by estimating the
arousal state from fNIRS and EDA measurements for the
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sake of investigating how it will be affected by different
types of music. We do so by exposing a participant to
neurological stimuli in a working memory experiment that
will elicit a cognitive-stress-related arousal response while
playing a different type of music. The working memory
experiment used in our investigation is called the n-back
task. In this task, participants are subjected to a series of
visual stimuli, then they’re required to determine whether
it matches the stimulus from n trials before. Understanding
music’s impact on the arousal state is of great importance for
biofeedback stress management systems. Such systems could
utilize music in closing the loop to control the participant’s
stress level. Controlling stress levels through music can be
utilized practically in numerous applications, one of which is
designing a more optimized educational environment using
appropriate music to maintain the student’s optimal cognitive
performance through maintaining an optimal level of arousal.

To decode cognitive arousal using fNIRS and EDA mea-
surements, we utilize a state-space model that describes the
relationship between the observations and the internal arousal
state similar to the approaches in [1], [5], [13]–[19]. By
considering various fNIRS features, we select three features
based on variance, root mean square, and local fNIRS peaks
as the most informative fNIRS observations in terms of
cognitive arousal. The neural impulse occurrence underlying
EDA is taken as a binary observation. To retain a low
computational complexity for our decoder and select the best
fNIRS-based observations, two features are chosen as fNIRS-
based observations at a time. Hence, we design the decoder
observations to be one binary observation extracted from
SC and two continuous observations extracted from fNIRS
measurements. Then, the hidden arousal state is estimated
using a Bayesian filtering approach within an expectation-
maximization (EM) framework. Finally, the best combination
of fNIRS observations for decoding cognitive arousal is
selected. This study serves as a proof of concept for utilizing
fNIRS and EDA measurements to develop a low-dimensional
decoder for tracking cognitive-stress-related arousal levels.

II. METHODS

A. Music n-back Experiment

We have designed our version of the n-back experiment
that consists of two main sessions separated by a rest period
of 2 minutes. In the first session, calming music was played
in the background and a vexing one for the second session.
Calming, and vexing music, respectively, have been defined
on an individual basis, where each participant has been asked
to specify one type of music that makes him feel more
relaxed (calming effect), and another type of music that
makes him feel more activated (vexing effect). Each session
consists of 16 trials of 1-back and 3-back tasks. The first
eight trials of each session are followed by a 20 second rest
period. A trial is selected to be a 1-back or 3-back task
with 0.5 probability. A single trial can be composed of 5-
second instructions followed by 22 of the 2-second blocks.
The first part of each 2-second block is a stimulus that lasts
for 0.5 seconds followed by a 1.5 seconds of fixation cross.

Therefore, in total, each trial is approximately 49 seconds in
length. A detailed description of the experiment is provided
in [10].

B. Data Collection

EDA and fNIRS measurements have been collected from
five participants: three females and two males with ages
ranging from 22-24 years old. We used NIRSport 2 noninva-
sive sensors to measure fNIRS signals. The system uses two
wavelengths of 760 and 850 nm. To measure hemodynamic
activity in the prefrontal cortex and the occipital areas of the
brain, we asked each participant to wear a head cap equipped
with 16 sources and 14 detectors forming 44 channels in
total. One EDA channel has been captured using the Biopac
data acquisition system with a sampling frequency of 2 KHz.

C. Preprocessing

1) EDA Measurements: We have followed the prepro-
cessing framework described in [20]. This framework can
be described in three main steps: 1) manual discontinuity
removal, 2) the application of a finite impulse response (FIR)
low pass filter of order 64, with the cut-off frequency of 0.1
Hz, 3) decomposing SC into the phasic and tonic components
using cvxEDA [21], where the phasic component is a high-
frequency part of the SC and the tonic component is the
low-frequency part.

2) fNIRS Measurements: All preprocessing steps were
accomplished using Nirslab software obtained from
www.nitrc.org. Those steps include:
• Truncating parts of the signal that do not correspond to

the experiment time frame.
• Bandpass filtering with a low cut-off freq of 0.01 Hz

and a high cut-off freq of 0.2 Hz.
• Converting raw light intensity signals to oxygenated

hemoglobin (HbO), deoxygenated hemoglobin (HbR),
and total hemoglobin (HbT) concentrations, respec-
tively.

D. Observations Extraction

For the observation extraction step, one binary observation
is taken from SC measurements and three continuous obser-
vations from fNIRS measurements. We should note, however,
that we only use one binary and two continuous observations
at a time for hidden arousal state estimation.

1) fNIRS-Related Continuous Observations: Since HbO
responses in the prefrontal cortex are related to cognitive
arousal, we only analyzed the HbO channels recorded from
the prefrontal cortex.

We can divide the trails into four tasks: 1) Task 1: 1-back
task with calming music. 2) Task 2: 3-back task with calming
music. 3) Task 3: 1-back task with vexing music. 4) Task 4:
3-back task with vexing music. Based on our experiment
setup, the arousal intensity levels are expected to be the
lowest during Task 1 and highest during Task 4. Hence,
we chose only the prefrontal channels that demonstrate
distinct changes between the two extreme intensity levels
of the arousal state - Task 1 and Task 4. We did so by
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calculating `2-norm for each prefrontal channel across the
two extreme levels. Next, we subtracted `2-norm of Task
1 from `2-norm of Task 4, and we chose only the channels
that have a corresponding value of greater or equal to 0.0001.
Fig. 1 shows the evaluation of `2-norm for each prefrontal
channel across the two extreme intensity levels for one of
the participants.

We have investigated various features based on fNIRS,
such as a moving average filter, a moving variance filter,
a moving skewness filter, a moving kurtosis filter, and a
filter that finds the number of peaks in a moving window to
select the continuous observations. Finally, we selected three
fNIRS-based observations that show a significant variation
between the calming music session and the vexing music
session. For the first continuous observation, we fed the
average of the selected channels to a moving variance filter
with a window length of 44 seconds, followed by a moving
average filter with window length equals 900 seconds to form
the first continuous fNIRS observation signal. Panel (b) in
Fig. 2 shows an example of the first observation. For the
second continuous observation, we applied a moving root
mean square (RMS) filter with a window length of 900
seconds. Panel (c) in Fig. 2 shows an example of the second
observation. For the third continuous observation, we applied
a moving local peak finder filter with a window length of 44
seconds followed by a moving average filter with a window
length of 37.22 minutes applied over each window peak
sample mean. Panel (d) in Fig. 2 shows an example of the
third observation.

Fig. 1: Different Channels’ `2-norm Corresponding to
Task 1 and Task 4.The blue-dashed line and the red-solid
curves show the `2-norms corresponding to Task 1 and 4 for
different channels, respectively.

2) SC Related Observation: Since SCRs can be modeled
as the sweat glands’ response to an SNS-generated burst of
neuroelectric stimuli (a train of neuroelectric pulses), we ex-
tract the neuroelectric stimuli by the deconvolution algorithm
proposed by [18]. SCRs’ occurrence rate (equivalent to the
occurrence rate of the neural impulses underlying the SCRs),
and amplitude are of the most common skin conductance-
related measures of hidden arousal state used in the literature
[5]. The deconvolution algorithm provides an estimate for
neuroelectric stimuli and the parameters of the model govern-
ing sweat diffusion and evaporation. The estimation process

relies on a two-step coordinate descent strategy [20] that
incorporates the coupled differential equation formulation
for the sweat diffusion and evaporation model described in
[22]. Panel (a) in Fig. 2 shows an example of the binary
observation.

E. State-Space Model

We utilize a point process state space (PPSS) framework to
analyze and model the observations. We model the arousal
state xk by using the following first-order auto-regressive
model:

xk = ρxk−1 + εk (1)

where εk ∼ N (0, σε
2) is noise process, and ρ is a mem-

ory factor. Also, σε2 and ρ are to be estimated from the
observations. Let mk be a binary version of the estimated
neuroelectric stimuli, i.e., mk = 1 when there is a neural
stimulus at time k, and mk = 0 otherwise. Since the
occurrence of a neuroelectric stimulus follows a Bernoulli
distribution with probability pk, we related xk to pk as
described in [5]

pk =
1

1 + e−(β+xk)
(2)

Let p0 be the average probability that mk = 1, and x0 = 0.
Then a participant-specific baseline parameter β can be found
by substituting p0 and x0 in (2) and solve for β.

For the continuous-valued observations sk and rk, we
relate them to xk using linear models [5]; sk and rk are
related to xk as follows

sk = δ0 + δ1xk + wk (3)
rk = γ0 + γ1xk + vk (4)

where wk ∼ N (0, σw
2), vk ∼ N (0, σv

2) are the modelling
error for sk and rk, respectively, and δ0, δ1, γ0, γ1 are to
be determined. To avoid overfitting to one of the continuous
observations, we assume wk and vk are equal each other in
our model.

Let the observations MK = {m1,m2, . . . ,mK}, RK =
{r1, r2, . . . , rK}, and SK = {s1, s2, . . . , sK}. Also, let
YK = {MK,RK,SK}, θ = {ρ, δ0, δ1, γ0, γ1, σ2

ε , σ
2
w, σ

2
v}.

Then our goal is to estimate XK = {x1, x2, . . . , xK}. This
can be achieved through the application of Bayesian filtering
within an expectation-maximization framework. In the E-step
we aim to estimate XK conditioned on YK and θ̂, and in the
M-step we solve for θ that maximizes the log-likelihood of
the complete data. The algorithm keeps alternating between
the two steps until convergence.

F. E-Step

In this step, XK can be estimated first by applying a for-
ward (causal) filter, and then followed by a backward (non-
causal) filter to obtain smoother estimates. To obtain Kalman-
like filter equations, we make a Gaussian approximation to
the posterior distribution p(xk|yk), following the exact same
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Fig. 2: Extracted Observations. This figure is divided into four panels: (a) EDA binary observation; (b) Continuous
observation 1 extracted from fNIRS measurements; (c) Continuous observation 2 extracted from fNIRS measurements; (d)
Continuous observation 3 extracted from fNIRS measurements; The colored rectangles represent 1-back task with a calming
music, 3-back task with a calming music, 1-back task with a vexing music, 3-back task with a vexing music.

procedure described in [5]. For k = 2 : K we obtain the
following

xk|k−1 = ρxk−1 (5)

σ2
k|k−1 = ρ2σ2

k−1|k−1 + σ2
ε (6)

Ck =
σ2
k|k−1

σ2
wσ

2
v + σ2

k|k−1(γ
2
1σ

2
w + δ21σ

2
v)

(7)

xk|k = xk|k−1 + Ck

[
σ2
vσ

2
w(mk − pk|k)

+ γ1σ
2
w(rk − γ0 − γ1xk|k−1)

+ δ1σ
2
v(sk − δ0 − δ1xk|k−1)

]
(8)

σ2
k|k =

[
1

σ2
k|k−1

+ pk|k(1− pk|k) +
γ21
σ2
v

+
δ21
σ2
w

]−1
(9)

Now by substituting xk|k in (2), we obtain

pk|k =
1

1 + e−(β+xk|k)
(10)

Substituting equation (10) in equation (8), results in xk|k
appearing on both sides of the equation. Thus, Newton-
Raphson numerical method should be applied to solve for
xk|k [5].

For the backward filter, we incorporate all observations
up to time K to estimate the mean and the variance of the

arousal state at time k, xk|K , σ2
k|K respectively.

ak ρ
σ2
k|k

σ2
k+1|k

(11)

xk|K = xk|k + ak(xk+1|K − xk+1|k) (12)

σ2
k|K = σ2

k|k + a2k(σ
2
k+1|K − σ

2
k+1|k) (13)

G. M-Step
In the M-step, we estimate θ by finding the one that

maximizes the log-likelihood of the complete data. We use
the same equations described in [5] for implementing the
M-step. However, we change the maximization step as a
constrained one to avoid any potential overfitting to one of
the two continuous observations. We consider σν = σw as
the constraint on the maximization problem.

III. RESULTS AND DISCUSSION
We have estimated the hidden arousal state and the model

parameters by using the EDA binary observation and every
possible combinations of two fNIRS continuous observa-
tions. Fig. 3 shows the estimated hidden arousal state for
each participant for every possible combinations of two
continuous observations. From visual inspection, we see
that there is an increase in the arousal state during the
vexing music session regardless of the selected observations’
combination.

We observe from the results, that all three combinations of
observations have captured the increase in the hidden arousal
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Participant 1 Participant 2

Participant 3 Participant 4

Participant 5

Fig. 3: Estimated Arousal States for Five Participants. Each subfigure represents the results for a certain participant in
three sub panels: (1) The hidden arousal state estimated using binary and continuous observations 1 & 2; (2) The hidden
arousal state estimated using binary and continuous observations 1 & 3; (3) The hidden arousal state estimated using binary
and continuous observations 2 & 3. The colored rectangles represent 1-back task with a calming music, 3-back task with a
calming music, 1-back task with a vexing music, 3-back task with a vexing music, and resting period.

state during the vexing music session. This can be interpreted
because usually the vexing music is composed of intense
auditory stimulation with a higher level tempo that increases
brain activity. In other words, vexing music helps the user
to obtain a higher level of emotional arousal that reduces
any potential boredom. Based on visual investigation, we see
that the variation in the state estimates is very small for a
given type of music. In other words, the variation in arousal
from one n-back task to another n-back is not visible. This
is because the blood hemodynamic response from fNIRS
measurements has a lower frequency bandwidth and it does

not capture the fast transitions in the level of brain activity.
Therefore, while fNIRS measurements can capture the slow
variation of the changes that occur over a long period of
time, they do not capture fast fluctuations.

Even though the results of the three combinations look
similar, the hidden arousal state estimated using observation
1 and observation 3 shows a delay in transitioning from a
low arousal state to a higher state when moving from the
calming music session to the vexing one. Furthermore, as
illustrated in Fig. 3, the arousal state estimates in the other
two combinations (i.e., observation 1-2 and observation 2-
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3) look very similar. It is evident from the results in these
five participants that these combinations share information
and state estimates from one combination can be derived
from another one. Among all combinations, the state estimate
based on observations 2 and 3 is the best one for estimating
the hidden arousal state.

IV. CONCLUSION

In this study, we utilize a state-space approach to combine
physiological recordings (i.e., EDA) and brain hemodynamic
recording (i.e., fNIRS) information to obtain one continuous
arousal state. We also propose to obtain fNIRS observations
that can differentiate between tasks with different arousal
levels. Our estimation results also show that different types
of music can influence the arousal level, where vexing music
has driven the arousal state to higher levels compared to
calming music.

In this study, we have shown that EDA measurements
along with the fNIRS measurements can carry useful in-
formation about the hidden states of the brain, which can
be applied in a wide range of applications. One potential
application is in designing a wearable machine interface
(WMI) that utilizes music to control stress in a non-invasive
way [11].

By combining different physiological measurements from
different locations in the body, we proposed a framework
for a more reliable hidden arousal state estimation compared
to a single physiological measurement. As this study serves
as a proof of concept of the feasibility of combining EDA
and fNIRS measurements for hidden arousal state estimation,
in future, we will perform further experiments and utilize
the current framework to investigate the benefit of using
both physiological recordings such as EDA and direct brain
recording over a single type of measurement.
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