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Abstract— Histopathological images are widely used to 

diagnose diseases such as skin cancer. As digital 

histopathological images are typically of very large size, in the 

order of several billion pixels, automated identification of 

abnormal cell nuclei and their distribution within multiple tissue 

sections would enable rapid comprehensive diagnostic 

assessment. In this paper, we propose a deep learning-based 

technique to segment the melanoma regions in Hematoxylin and 

Eosin-stained histopathological images. In this technique, the 

nuclei in an image are first segmented using a deep learning 

neural network. The segmented nuclei are then used to generate 

the melanoma region masks. Experimental results show that the 

proposed method can provide nuclei segmentation accuracy of 

around 90% and the melanoma region segmentation accuracy of 

around 98%. The proposed technique also has a low 

computational complexity. 

Keywords— Histopathological image analysis, Nuclei 

segmentation, Melanoma detection, Deep learning. 

I. INTRODUCTION 

The Cutaneous Malignant Melanoma (CMM) is an 
aggressive type of skin cancer. The early diagnosis of CMM is 
very important as it helps increasing the chances of successful 
treatment and survival rate [1]. The gold standard for the 
diagnosis is the examination of histopathological images. The 
digitized histopathological slides, which are typically obtained 
by scanning the stained biopsy slides of the skin tissue, can 
provide the cell morphological features with high resolution. 
The digitized slides, also known as Whole Slide Images 
(WSIs), can enable computer aided diagnosis and assist the 
pathologist to achieve accurate and faster diagnosis [2,3]. The 
Hematoxylin and Eosin (H&E) stain is widely used in 
histopathology as the morphological features of the cells 
become vividly clear. Fig. 1 shows an H&E-stained 
histopathological image of a CMM (contoured in green) 
within a cross section of a skin tissue slide. 

The deep learning algorithms based on Convolutional 
Neural Networks (CNN) have recently been used successfully 
in medical image analysis. Badrinarayanan et al. [4] proposed 
the SegNet architecture for object segmentation. Ronneberger 
et al. [5] proposed the U-Net architecture for biomedical image 
segmentation. Alheejawi et al. [6] proposed a technique 
(henceforth referred to as the NS-Net+FC technique) to 
segment and classify the cell nuclei on the H&E-stained 
images. The nuclei segmentation (NS) is performed using the 
NS-Net architecture that contains 5 convolutional layers with 
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different filter sizes. From each segmented nucleus, 54 hand-
crafted features are extracted, and the feature vector is fed to a 
Support Vector Machine (SVM) for the nuclei classification 
(melanoma or non-melanoma nuclei). Sabol et al. [7] proposed 
a patch-based segmentation technique (henceforth referred to 
as the PBS-ResNet technique) to detect colorectal cancer 
regions in H&E-stained WSIs. This technique divides a WSI 
into nonoverlapping patches of size 64x64 pixels. The ResNet-
50 architecture is then used to classify the patches. Although, 
the patch-based segmentation is computationally fast [8], the 
technique might generate many false positive patches. 

 
Figure 1. Example of an H&E-stained skin tissue WSI. 

In this paper, we propose an automated technique to generate 

melanoma region masks in H&E-stained images. In the 

proposed technique, the nuclei are first segmented into 

melanoma and non-melanoma classes using a CNN. The 

CMM regions are then generated by applying morphological 

operations on the melanoma cells.  

The organization of the paper is as follows. Section II 

describes the proposed technique in detail. Section III 

presents the performance evaluation, followed by the 

conclusion in Section IV. 

II. PROPOSED TECHNIQUE 

The schematic of the proposed technique is shown in Fig. 
2, which consists of two modules: CNN-based nuclei 
segmentation and melanoma region detection. The details of 
these two modules are presented in the following. 

 

Figure 2. Schematic of the proposed melanoma detection technique. 
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A. CNN-based Nuclei Segmentation 

In this module, the H&E-stained image is segmented into three 
regions: melanoma nuclei, non-melanoma nuclei and 
background regions. The segmentation is done by using the 
proposed CNN architecture shown in Fig. 3. The CNN 
architecture has 25 convolution layers (compared to 5 layers 
in the NS-Net [6] architecture) used for nuclei segmentation. 
The proposed architecture, henceforth referred to as the 
improved NS-Net (INS-Net), consists of two paths: path A and 
path B. Out of 25 layers, 11 layers are in the path A, and 12 
layers are in path B. Note that there are five Skip Connections 
(Skip Conn-m, where m=1,2,3,4,5) in the proposed INS-Net to 
reduce the gradient vanishing impact [9]. There are 6 types of 
layers in INS-Net architecture and the details of these layers 
are explained below. 

 
Figure 3. The proposed INS-Net CNN architecture. Note that the output 
image pixels are classified into 3 types: melanoma (red), non-melanoma 
nuclei (blue), and background(white) pixels. 

1. C-BN-R layer: This layer includes three operations: 
Convolution, Batch Normalization, and nonlinear 
activation using Rectified Linear Units (ReLU). 

2. C-BN-R-P layer: This layer consists of a C-BN-R layer 
followed by a Pooling layer to reduce the size (width x 
height) of the feature maps by selecting a pooling window 

and a stride value. In this paper, we have used MAX 
pooling, with a window size of 2x2 and a stride of 2x2. 
Note that the index of the maximum value is sent to the 
corresponding C-BN-R-UnP layer.  

3. C-BN-R-UnP layer: This layer consists of a C-BN-R layer 
followed by an UnPooling layer to upsample the feature 
map size (width x height). In this paper, an upsampling 
factor of 2x2 is used. The upsampling is done using the 
bilinear interpolation. The corresponding index from the C-
BN-R-P layer is used to determine the location of the pixel 
that needs to be upsampled. 

4. Concatenate layer: This layer combines the feature maps of 
same size (width x height) from two or more input layers. 
The depth of the output layer is equal to the sum of the 
depths of the input layers. In Fig. 3, the last concatenate 
layer concatenates the output of paths A and B. 

5. SoftMax layer: This layer finds the probability values of 
each pixel corresponding to K classes. Note that each pixel 
will have K probability values (In this paper, K=3). 

6. Pixel classification layer: This layer selects the class with 
the highest value of SoftMax output for each pixel. 

In the proposed INS-Net, the Path B is used to extract the 
fine features of the cells and the background, whereas the Path 
A is used to extract the coarse features of the cells and 
background regions. The INS-Net architecture is used to 
segment the H&E-stained image pixels into melanoma nuclei, 
non-melanoma nuclei, and background pixels. The nuclei 
segmentation results are very important to determine the 
melanoma region masks in H&E-stained images. These masks 
can help doctors in determining the depth of melanoma 
invasion and in grading the melanoma. In the next section, the 
nuclei segmentation results will be used to determine the 
melanoma region masks. 

A. Melanoma Region Detection (MRD) 

This module is used to determine the melanoma regions 
(MR) from the nuclei segmentation masks obtained using the 
INS-Net architecture. The MR detection consists of several 
morphological operations applied on the melanoma nuclei 
mask. Note that the melanoma nuclei mask is a binary mask 
representing the melanoma nuclei class obtained from the 
nuclei mask. The MR detection is done using the following 
steps.  

1. The isolated melanoma nuclei (considered as foreground) 
in a neighborhood are merged using the binary 
morphological dilation operation. In this work, a disc 
structuring element with 5-15 pixels radius is used.  

2. Sometimes, there are small, isolated background pixels 
inside the merged melanoma regions, which can be 
considered as noise. An image fill operation is performed 
to change these isolated background pixels to the 
foreground pixels.  

3. During the dilation operation (step 1), the size of an object 
typically increases. To nullify the increase in size, an 
erosion operation is performed. The structuring element is 
same as that used in step 1. 

4. Connected melanoma regions with small areas are 
removed by using an area threshold. In this paper, an area 
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threshold of 600 pixels (equivalent to 150 µm2 area) has 
been used. 

Note that a variant of the MR generation technique was 
also implemented by applying the image closing operation 
followed by image fill and area threshold. But the overall 
performance is not as good as the proposed MRD module. 

III. RESULTS AND DISCUSSIONS 

In this section, performance of the proposed technique is 
presented and compared with the state-of-the-art techniques. 
The nuclei segmentation performance is presented first 
followed by the melanoma region detection performance. 

The performance is evaluated using an image dataset 

consisting of 100 H&E-stained 960 x 960 RGB images 

extracted from 4 WSIs of skin tissue. Four-fold cross 

validation is used. For each fold, one WSI is arbitrarily chosen 

as the testing WSI, and 25 H&E-stained images from this WSI 

are used as the testing dataset. The remaining 75 ROI 

windows (from the other 3 WSIs) are used as the training 

dataset. This process is repeated four times for the four-fold 

cross validation, and four sets of performance measures are 

obtained. The average performance is then calculated. 

A. Nuclei segmentation performance 

The nuclei segmentation performance of the INS-Net is 
evaluated and compared with SegNet, U-Net and NS-Net 
architectures. The PBS-ResNet technique is not compared as 
it does not perform nuclei segmentation. The segmentation 
performance is evaluated using Accuracy, and Dice 
Coefficient measures defined as follows: 
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where TP, TN, FP and FN denote the number of true positive, 

true negative, false positive and false negative pixels, 

respectively. 

TABLE I.  NUCLEI SEGMENTATION PERFORMANCE 

Techniques Accuracy Dice Coefficient 

SegNet [4] 87.84 85.81 

U-Net [5] 78.79 69.63 

NS-Net [6] 90.21 88.52 

INS-Net 94.12 89.17 

Table I shows the segmentation performance of different 
techniques. In this work, the SegNet, U-Net and NS-Net and 
the proposed INS-Net architectures are trained with the same 
number of training images (i.e., 75 H&E-stained images). Fig. 
4 shows visual examples of melanoma nuclei classification 
results using the NS-Net+FC, and the proposed INS-Net 
compared with the ground truth image. Note that for the 
SegNet, U-Net and NS-Net techniques, the nuclei are first 
segmented using the CNNs and detected nuclei are then 
classified using an SVM classifier [6]. The SVM uses a feature 

vector of length 54 (18 first-order features, 9 Histogram of 
Oriented Gradient features, 24 Haralick texture features and 3 
Morphological features) calculated for each nucleus. In the 
proposed (INS-Net) technique, the nuclei segmentation and 
classification are integrated in a single CNN architecture. In 
Fig. 4(c), it is observed that the INS-Net has superior nuclei 
classification results compared to the NS-Net+FC outputs 
shown in Fig. 4 (b). The objective nuclei classification 
performance is shown in Table II. It is observed that the 
proposed INS-Net provides a superior classification 
performance compared to the NS-Net+FC architecture. The 
mis-classification results of the melanoma nuclei can impact 
negatively on the obtained melanoma regions detected by the 
MRD module. Note that accurate melanoma nuclei 
classification results are important to obtain a good MR 
detection performance by the MRD module. 

 

Figure 4. Subjective comparison of nuclei classification results of H&E-
stained image shown in Fig. 1. (a) The ground truth classification, (b) 

classification by NS-Net+FC, and (c) classification by the proposed INS-Net. 

The melanoma, non-melanoma and background pixels are presented in red, 
blue and white pixels, respectively.  
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B. Melanoma Region Detection performance 

In this section, the MRD is evaluated and compared with the 
state-of-the-art techniques. The overall performance is shown 
in Table III. It is observed that the proposed INS-Net+ MRD 
provides superior melanoma region detection performance 
compared to that of the PBS-ResNet and NS-Net+FC+MRD 
techniques. Fig. 5 shows a visual comparison of the regions, 
for the WSI shown in Fig. 1, detected by the NS-
Net+FC+MRD and INS-Net+ MRD. The NS-Net+FC+MRD 
generates a significant number of FP and FN pixels due to the 
misclassification of melanoma nuclei. On the other hand, the 
INS-Net+MRD provides a superior segmentation 
performance. This is because the technique first classifies the 
melanoma nuclei and builds the melanoma region by merging 
the detected nuclei thereby resulting in a superior 
performance. 

TABLE II.  NUCLEI CLASSIFICATION PERFORMANCE 

Technique Accuracy Dice Coefficient 

NS-Net+FC [6] 97.27 81.37 

INS-Net (proposed) 99.33 86.48 

TABLE III.  MELANOMA SEGMENTATION PERFORMANCE 

Steps Accuracy Dice Coefficient 

PBS-ResNet [7] 94.66 78.00 

NS-Net+FC+MRD1[6] 95.80 80.88 

INS-Net+MRD (proposed) 97.70 85.10 
1The MRD module has been added to NS-Net+FC to generate the 

melanoma region mask. 

 

Figure 5. Subjective comparison of the detected melanoma regions. (a) NS-
Net+FC+MRD, and (b) INS-Net+MRD. The melanoma regions are shown 
with blue contour. The last row shows the FP (green), TP (green), FN (red) 
and TN (black) regions. 

IV. CONCLUSION 

This paper proposes an automated technique to detect the 

melanoma regions in a skin tissue slide stained with H&E. 

The proposed technique segments the cell nuclei in H&E-

stained images using a deep learning INS-Net architecture. 

The INS-Net architecture segments the whole slide image into 

melanoma nuclei, non-melanoma nuclei and background 

regions. The segmented melanoma nuclei are then used to 

generate a melanoma region mask using morphological 

operations. The proposed technique provides an excellent 

segmentation performance with a low computational 

complexity. 
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