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Abstract— Warfarin belongs to a medication class called
anticoagulants or blood thinners. It is used for the treatment
to prevent blood clots from forming or growing larger.
Patients with venous thrombosis, pulmonary embolism, or who
have suffered a heart attack, have an irregular heartbeat,
or prosthetic heart valves are prescribed with warfarin. It
is challenging to find optimal doses due to inter-patient
and intra-patient variabilities and narrow therapeutic index.
This work presents an individualized warfarin dosing method
by utilizing the individual patient model generated using
limited clinical data of the patients with chronic conditions
under warfarin anticoagulation treatment. Then, the individual
precise warfarin dosing is formalized as an optimal control
problem, which is solved using the DORBF control approach.
The efficiency of the proposed approach is compared with
results obtained from practiced clinical protocol.
Clinical Relevance– This establishes a framework for achieving
personalized precise warfarin dosing strategies by utilizing
personalized models and modern control techniques from
limited clinical data.

I. INTRODUCTION

Warfarin is a commonly prescribed oral anticoagulant
to prevent fatal blood clots in patients. In older adults,
warfarin is drug-related source of adverse effects [1]. A
blood test called international normalized ratio (INR) of
prothrombin duration is used to track the effects of warfarin.
The therapeutic INR range is narrow: 2.0–3.0 in most
cases [2] and 2.0–2.5 in patients with coronary heart disease
who need antiplatelet and anticoagulation therapy [3]. When
the warfarin dose is too high, internal bleeding occurs, and
when the dosage is low, stroke occurs. Narrow therapeutic
range, along with a ten-fold disparity makes clinical control
of warfarin much more complex [4].
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The warfarin dose calculation equations suggested by
Gage [5] and the International Warfarin Pharmacogenetics
Consortium (IWPC) [4] are most widely used in clinical
practice today. Gage used least square regression to predict
dosage in their work, where they used median absolute
error to measure accuracy. Although their model takes the
patient’s race into account, their data consists of primarily
European patients. IWPC used a similar approach as Gage,
but they had significantly large and diverse data [4]. In
their work Yu [6] have used multivariate regression equation
to study VKORC1 (-1639G>A) and CYP2C9 genotype
cases with heart valve replacement. As the warfarin clinical
data grew larger, machine learning methods [7], Bayesian
decision [8], boosted regression tree [9], artificial neural
networks (ANNs) [10], and reinforcement learning [11] have
been used by researcher to find precise warfarin dosage.
However, an individualized dosing approach should have
the benefit of being encumbering a specific patient without
relying on general population data.

The administration of warfarin can be modeled as a
constrainted optimal control problem, in which the desired
INR level is set between 1.5-2. Medical restrictions, such
as the maximum daily dose, the rate of change in INR,
and the rate of change in dosage, may impose these
constraints. For the individualized warfarin dosing problem,
we implemented the Radial Basis Function-Galerkin method
developed by Mirinejad et al. [12] [13] as a general
optimal control problem-solving framework and developed
a Receding Horizon Control (RHC) approach to provide
a precise warfarin dose. The individualized models we
have used are derived from limited clinical patient-specific
data using semi-blind system identification techniques [14].
Results have been compared with the results of clinical
practice warfarin management guidelines [15].

The paper is organized as follows: Section 2 presents the
individualized patient models and the warfarin management
problem as an optimal control problem. Section 3 presents
the results and comparison of the proposed RHC and WMP.
Finally, the conclusions are given in Section 4.

II. WARFARIN MANAGEMENT PROBLEM

A. Individualized Patient Model from limited clinical
patient-specific data

Patient-specific warfarin dosing data were obtained from
a study of warfarin pharmacodynamics in 162 subjects
performed at the Robley Rex Veterans Medical Center,
Louisville, KY. Patient data were obtained by retrospective
review and through an informed consent process. To find the
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model for each patient, we have used a Semi-blind robust
identification technique that considers the initial conditions
of the patient [14]. The problem statement for Semi-blind
identification can be briefly defined as follows:

Problem 1: Given input sequence u, output sequence y,
noise bound ∈ N , maximum stability gain and characteristics
of past input u−, determine G(z) = Gp(z) +Gnp(z) which
is compatible with priori and posteriori information, such
that τ is non-empty set.

τ(y)
.
= yi =

N∑
i=0

giuN−i + CgA
N−1
g (ΓN

g u
−)i=0 (1)

where g0 = Dg; gi = Cg(Ag)i−1Bg . Problem (1) is a
non-convex, NP-hard problem which can be converted into
the convex problem, given in [16], as follows:

Problem 2: Determine G(z) such that τ is non-empty set:

τ(y) =
{
G(z) ∈ S : yi − (TN

g u)i + (ΓN
g u

−)i
}

(2)
where,

∣∣(ΓN
g u

−)i
∣∣ 6 γKu; i = 0, 1, · · · , N − 1 and TN

g is
the Toeplitz matrix and ΓN

g is the Hankel matrix. The first
part of the τ set corresponds to the plant response for input
u, and the later part provides information for plant response
for past inputs u−. This problem can be solved by LMIs
as presented in [16]. The individualized models of patients
number 33 and 40 obtained by the semi-blind identification
technique are given in Eqs. 3, and 4, respectively.

G33(z) =
0.0591z3 − 0.0469z2 + 0.0014z − 0.78−3

z3 − 1.612z2 + 0.7558z − 0.134
(3)

G40(z) =
0.246z3 − 0.22z2 + 0.085z − 0.0074

z3 − 1.69z2 + 0.8817z − 0.1823
(4)

B. Warfarin Management Protocol

Warfarin management protocols (WMP) are guidelines for
the warfarin dose to be provided. These guidelines are the
range of possible dosages availabe in tables for different INR
levels in different categories of patients. These guidelines
make recommendations based on the facts presented in
the American College of Chest Physicians Clinical Practice
Guidelines (CHEST) report [17]. WMP guidelines provide a
range of standardized dosage of warfarin for a population
of patients as a whole and do not provide any precise
individualized dosage.

C. Precise Warfarin Management Problem Statement

The dosage of warfarin is determined by a number of
factors, including the current INR level, the rate at which the
INR level changes, the maximum dose of warfarin, and so on.
The warfarin dosage problem can be viewed as an optimal
control problem by formalizing the individualized drug-dose
response model for each patient. As we have used first 5
days dose-response data to find the patient model, the INR
at 5th day is considered as the baseline INR (INR0). The
healthy INR level is considered to be in range of 1.5-2,it is
called target INR (INRT ). The one time maximum warfarin
dose allowed is 20mg, and the warfarin dose variation per

week should be in the range of ±50%. Warfarin dosing can
be formulated as an optimal control problem as below.

Minimize J =

∫ tf

t0

((x2(t)− α)2 + (u(t)− α)2)dt (5)

subject to system equations,

ẋ1(t) = ax1(t) + bx2(t) + .......+ cu(t)

ẋ2(t) = x1(t)

y1(t) = x2(t) + I0 , y2(t) = x1(t)

(6)

box constraints, and initial conditions,

0 ≤ u(t) ≤ 20 , −0.5u(t− 1) ≤| u̇(t) |≤ 0.5u(t− 1)

x1(0) = 0 , x2(0) = 0 , u(0) = 0
(7)

where system equations coresponds to the individualized
models, a, b, c are constants, u(t), u̇(t), y1(t), and y2(t) are
warfarin dose, warfarin dose derivative, INR level, and rate
of change of INR, respectively.

D. Radial Basis Function (RBF)-Galerkin Solution

RBF-Galerkin is a numerical solution methodology that
solves Eq. (6)–(7) optimal control problem, by interpolating
global RBFs on an arbitrary set of collocation points [18]. To
solve the warfarin dosing problem, x(t) = [x1(t) x2(t)....]T

and u(t) are approximated using N global RBFs within
[0 , tf ] as

x(t) = xR(t) =

N∑
i=1

αiϕ(|| t− ti ||) =

N∑
i=1

αiϕi(t)

u(t) = uR(t) =

N∑
i=1

βiϕ(|| t− ti ||) =

N∑
i=1

βiϕi(t)

(8)

where xR(t) and uR(t) denotes the RBF approximation of
x(t) and u(t), respectively. ϕi(t) is the radial basis function
and αi, βi are RBF weights related to xR(t) and uR(t),
respectively. The optimal control problem is then discretized
using equally-spaced nodes τj , j =1,2,...,N, distributed
over the interval [0, tf ] given by τ1 = 0, τN = tf . The
integral cost function of (5) is also approximated by the
Chebyshev-Gauss quadrature as

J =
tf
2

N∑
j=1

wj((x
R
2 (t)− α)2 + (uR(t)− α)2) (9)

where wj are weights corresponding to equally-spaced
nodes, on the other hand, the differential equations of
(6) are transcribed into algebraic equations using Gaussian
differentiation matrix [19] to transcribe the optimal control
problem of (5)–(7) into a Non-Linear Programming (NLP)
problem where the decision variables are RBF weights [20].
The NLP problem can be straightforwardly solved using NLP
solvers such as SNOPT [21].
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Fig. 1. Receding horizon controller based on the RBF-Galerkin method for individualized precise warfarin dosing

E. Receding Horizon Control (RHC) Approach

In RHC constrained optimization problems are solved
over a time horizon by repetition where the cost of the
problem, disturbances and the constraints are used in each
iteration [22]. The constraints are used as the limits on the
control variables and feed forward actions are generated.
RHC is easier to compute than steady state optimal control,
it is adaptive to parametric changes than infinite horizon
control, it tracks better than PID, and it features better
constraints handling among the others [23]. The optimal
warfarin dose sequence (u∗n+1 u

∗
n+2 ... u∗n+N ), where n is

the current time instance, is computed by the RBF-Galerkin
method from the current state to the desired state over a
finite time horizon tf . However, only the first dose from
the computed warfarin sequence (i.e., u∗n+1) is given to the
patient, and new states xn+1 are computed for the patient by
measuring the current INR level (INRm). The exact process
will be repeated using the updated state and the recent control
u∗n+1 as the initial values for the next iteration. The resulting
control approach is illustrated in Fig. 1.

III. RESULTS AND DISCUSSION

In this work, we have used first 5 days clinical data of each
patient to create individual patient models and find out the
optimal dosage of warfarin and respective INR level using
RBF-Galerkin controller and WMP. So the treatment starts
from sixth day with current INR as baseline INR and 1.5 as
target INR. The treatment time frame is 52 days. INR level
and warfarin dosage produced by the RBF-Galerkin-based
RHC are then compared with those obtained from the clinical
WMP to examine the efficiency of our method. The warfarin
dosage generated by the WMP or the RHC is a daily dosage,
but the changes are made weekly.The warfarin dose comes
in different tablet strengths: 1, 2, 2.5, 3, 4, 5, 6, 7.5, and 10
mg [24]. Therefore, we have quantized the daily dosage so
that the required daily dose can be taken by one tablet. In
both cases, zero warfarin dose is allowed, which means no
warfarin dose for a day or two; if the patient’s INR level is
higher than 4.1 [15]. Furthermore, to make the simulations
more realistic, we have added measurement error (due to
error in apparatus or human reading error) in the INR level as
a form of random noise. The results for both with and without
measurement error cases are discussed as follows. Achieved
INR levels and warfarin dose adjustments computed from
RBF-Galerkin RHC and WMP for patients #33 and 40 in
the patient dataset are shown in Fig. 2-3. In the figures

the red vertical line is the identification point from where
the treatment using RHC or WMP starts, before that point
are the clinical data. It can be seen from the figures that
RHC reaches the target INR level faster while WMP tries
to keep the INR level in the healthy range of 1.5-2. The
RHC provides us a stable warfarin dosage to keep the INR
level near the target value. The measurement noise we have
added to the INR output is a white noise with the maximum
amplitude of 0.3 (-0.3 ≤ INR error ≤ +0.3). Fig. 4-5 shows
the achieved INR levels and warfarin dose adjustments with
measurement error for patients #33 and 40. It is clear from
the figures that the measurement noise has a negligible effect
on the RHC outputs, while in the case of WMP, the results
are significantly affected. From the results, we can see that
WMP overshoots the INR level, while RHC tries to use the
minimum possible warfarin dose, which can increase the
patient’s INR level near the target value. Another advantage
of RHC over the WMP is that we can select a target INR
level in RHC, making the patient’s INR more stable with an
optimal warfarin dosage. However, the WMP tries to keep
the INR level within a range, making the INR fluctuate in
the patient’s body with a regularly changing warfarin dose.

Fig. 2. INR level and warfarin dose adjustments obtained from RHC
(proposed method), and WMP for patient-33

Fig. 3. INR level and warfarin dose adjustments obtained from RHC
(proposed method), and WMP for patient-40
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IV. CONCLUSION

An individualized precise warfarin management algorithm
has been developed based on the RBF-Galerkin optimization
method with the individualized patient model derived from
limited patient-specific clinical data. We formulated the
warfarin management problem as a constrained optimal
control problem and numerically solved it using the
RBF-Galerkin method. RHC approach was used with the
optimization algorithm to precisely control the INR level and
warfarin dose. Results were compared with those obtained
from WMP to evaluate the efficiency of the proposed
method which indicated that RHC tried to keep INR stable
throughout the time frame, even under measurement errors
while tracking the target INR level. Furthermore, warfarin
dosages computed by our approach were more stable,
accurate and reached the steady-state value notably faster.
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