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Abstract— Tomography is a two step process in which
the sample under test is first scanned by the hardware of
the system to acquire data and then the operating software
reconstruct images from the gathered information. The main
objective of this work is to optimize the scanning process to
acquire maximum amount of information in each measurement
when the system is scanning the sample. By exploiting our
prior information about the sample and using estimation
theory, we developed a systematic approach to implement
the optimal scanning protocol. Results of this study provide
strong evidence that the developed algorithms can speed
up data acquisition. Also it is shown that the proposed
method can reduce the impact of noise as well as improving
the reconstruction error while performing less number of
measurements.

Clinical relevance— The proposed method can enhance data
acquisition time, exposure dosage and cost of operation in
medical applications of tomography.

I. INTRODUCTION

Tomography is a type of imaging modality that captures
the three-dimensional distribution of certain properties (e.g.,
contrast changes in absorption, fluorescence, or scattering
parameters) in the sample. In this form of imaging, one
or an array of sources radiate energy into the medium and
an array of detectors on the output side records scattered
field. In the past decades, researchers proposed methods
to improve the efficiency of data acquisition process in
tomography applications. One strategy is to construct a series
of spatial illumination patterns that take advantage of the
degree of freedom provided by external illumination. Various
scanning protocols with specific illumination patterns have
been proposed in the past [1]–[4]. However, such methods are
usually only suitable for some applications and do not offer
significant improvement. In a separate approach, researchers
concentrate on the assessment of scanner’s geometry or the
design of illumination patterns to enhance the conditioning
of the system matrix [5]–[8]. For instance, [9] obtained
illumination patterns by improving the conditioning of the
Fisher information matrix. Obviously, raster scanning is
another popular scanning protocol used in many tomography
systems. In this imaging technique, only one source is illu-
minating power during each measurement while all detectors
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are recording, thereby minimizing the linear dependency of
the measurements [10].

The simplicity of the raster scanning algorithm and its ca-
pability in exploring the object with all possible independent
measurements is an obvious benefit of the protocol. However,
raster scanning is time consuming and not suitable for
many imaging applications where the sample is dynamically
evolving. To expedite data acquisition process, we need
to reduce the number of measurements by making each
measurement as informative as possible. One approach is to
take advantage of the information content we already have
about the object in the scanner before scanning. In this study,
we apply some aspects of estimation theory to include prior
information in the design of optimal illumination pattern.
We propose a method based on the Kalman filter theory
to compute optimal illumination patterns in data acquisition
process and reconstruct images of acceptable quality from a
smaller number of measurements.

II. OPTIMAL ILLUMINATION PATTERN DESIGN

Tomographic imaging problem consists of a forward prob-
lem and an inverse problem. The forward problem describes
energy propagation in the medium from sources to detectors
and the inverse problem uses the collected data to reconstruct
the image. Prior to any measurement, we have an initial
estimation of the distribution we intend to reveal. By using
the forward model and this estimation, we can predict
the outcome of any measurement. Each time we make an
observation, the result can be used to update our estimation.
The objective here is to create a mathematical framework
that describes how we should update our estimation based
on the forward model predictions and partial observations.

Here, we adopt diffusion model for the propagation of
wave in tissue. The intensity of the scattered field at the
location of the ith detector, r̄di is

φs(r̄di) '
S∑

j=1

V∑
k=1

IjG2(r̄di ; r̄vk)G1(r̄vk ; r̄sj )ηk. (1)

The variable Ij is the intensity of the field, illuminated by the
jth source. G(r̄; r̄′) is the Green’s function which models the
diffusion of the field for the selected scanner geometry. r̄vk
is the vector that points to the center of the kth voxel which
has the total scattering potential of ηk. In vector notation,

φ̄s = ¯̄Wη̄ + ε̄, (2)

where φ̄s is a vector with D elements (D is the number
of detectors), η̄ is the estimation vector with V volume
elements, and ε̄ ∼ N (0, ¯̄R), is the measurement noise which
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has Gaussian distribution. ¯̄WD×V = ¯̄G2 · diag( ¯̄G1 · Ī) is
the weight matrix which depends on device specifics such
as source-detector geometry and illumination pattern, Ī .

Suppose that our prior estimate of the vector η̄ is repre-
sented by η̂n|n−1 at the time of nth measurement. We use
this estimate to predict the output of measurement which is
¯̄Wnη̂n|n−1. After we make a measurement, φ̄ns , we need to

combine the two pieces of information (model prediction and
measurement output) in order to form a posterior estimate
η̂n|n. This procedure is well aligned with the function of
Kalman filter which combines theoretical predictions with
noise contaminated partial observations to compute the up-
dated minimum-variance estimation.

η̂n|n = η̂n|n−1 + ¯̄Kn
[
φ̄ns − ¯̄Wnη̂n|n−1

]
. (3)

Here, ¯̄Kn is the Kalman gain. Uncertainties in the prior
and posterior estimations are modeled by covariance ma-
trices: ¯̄Pn|n−1 = Cov

(
η̂n|n−1

)
and ¯̄Pn|n = Cov

(
η̂n|n

)
,

respectively. Following the theory of Kalman filter, the
uncertainty of the updated estimation (posterior covariance
matrix) is given by:

¯̄P (n|n) =
[

¯̄U − ¯̄Kn ¯̄Wn
]

¯̄P (n|n−1)
[

¯̄U − ¯̄Kn ¯̄Wn
]T

+ ¯̄Kn ¯̄R( ¯̄Kn)T , (4)

where ¯̄U is the identity matrix.
In this study, our aim is to find out which measurement

leads to a posterior estimate η̂n|n that is as certain as
possible. This means that we need to minimize uncertainty
of the posterior estimation. Since our uncertainty is modeled
by a matrix, we use the trace of the covariance matrix as
a measure of remaining uncertainty in the estimation. Trace
is the norm that should be minimized by selecting the best
measurement via designing the best illumination pattern. For
simplicity, we first start by analyzing scanners with a single-
detector and then we generalize the concept to scanners with
multiple detectors.

A. Single-Detector Scanner

The Kalman gain is a column vector in the single-detector
case, and the measurement noise is a scalarε ∼ N (0, σ2).
Therefore, trace of the posterior covariance can be written
as:

Tr[ ¯̄Pn|n] = Tr[ ¯̄Pn|n−1]− 2W̄n ¯̄Pn|n−1K̄n +[
W̄n ¯̄Pn|n−1(W̄n)T + σ2

]
(K̄n)T K̄n. (5)

To minimize this trace, we first assume that W̄n is constant
and we minimize Tr( ¯̄Pn|n) with respect to Kalman gain.
Solving ∇K̄nTr[ ¯̄Pn|n] = 0 results in:

K̄∗n =
[
W̄n ¯̄Pn|n−1(W̄n)T + σ2

]−1
¯̄Pn|n−1(W̄n)T . (6)

Now, given the optimal Kalman gain, we formulate the
problem to search for the optimal illumination pattern, Ī(n).

Ī∗n = argminĪn

1

2
(Īn)T ¯̄An|n−1Īn + b̄T Īn,

s.t. Imin
j ≤ Ij ≤ Imax

j , ∀j.
¯̄An|n−1 = (K̄n)T K̄n ¯̄GT ¯̄Pn|n−1 ¯̄G,

b̄ = − ¯̄GT ¯̄Pn|n−1K̄n. (7)

Here, ¯̄G is a V × S matrix that transforms the source il-
lumination vector Īn to the weight matrix W̄n = ( ¯̄Gn.Īn)T .
The optimization problem in (7) is a convex Quadratic
Programming (QP) problem with inequality constraints and
has a single (global) minimum. Thus, to find the minimum of
(5), we repeat the computation of K̄∗n and Ī∗n in an iterative
loop until convergence is achieved. We then illuminate the
sample with the calculated optimal illumination pattern to
make the measurement. The result of the measurement is
then used to update our estimation of η̄ and its covariance
matrix.

(a)

(b) (c)

Fig. 1: (a) Structure of a 2D square single-detector scanner
and the comparison between optimal illumination and raster
scanning. Following optimal illumination algorithm, one can
reconstruct images with acceptable distortion while taking a
smaller number of measurements, (b) RRU values plotted
as a function of measurement number for two different
scanning protocols, (c) distribution of noise and the scattering
parameter along with the principal components of the data.

To better study the performance of our algorithm, a simple
simulation experiment was carried out by modeling a 2D
single-detector scanner shown in Figure 1a. The scanner is
square in shape, with 18 sources evenly spaced on three
sides. 81 pixels were used to discretize the region within the
scanner. Scattering potentials of these pixels are unknown
variables for which we have prior estimation of their mean

3987



values and the corresponding covariance matrix. This limited
number of pixels was only used to illustrate the concept.
We simulated 18 rounds of optimal measurements/updates.
For comparison, reconstructed images generated by the raster
scanning and optimal pattern protocols are shown at two
different stages in Figure 1a. The actual distribution and our
first estimation are also shown in the first column. Even
though the first estimation is significantly different from
the actual distribution, our proposed algorithm was able to
predict the distribution with a reasonable level of accuracy
after 18 measurements. Also, it can be seen that our optimal
illumination method outperforms raster scanning even after
making seven measurements. The trace of the covariance
matrix was computed after each update and normalized by
the initial trace value to calculate the Relative Residual
Uncertainty (RRU). Curves in Figure 1b show the evolution
of RRU values when the scanner was following the optimal
illumination pattern algorithm as well as the conventional
raster scanning. Notice that raster scanning reaches a certain
level of certainty after 18 measurements, while optimal
illumination method reaches the same level of certainty after
making only 7 measurements. This data proves that the
optimal illumination approach, compared to raster scanning,
expedites the scanning process and generates more accurate
images while taking a smaller number of measurements.

Since every feasible illumination pattern is a linear com-
bination of patterns produced in raster scanning, we expect
the final value of RRU obtained by raster scanning to be
equal to or better than what is eventually obtained by optimal
patterns. However, as it is shown in Figure 1b, in the presence
of measurement noise, optimal illumination algorithm leads
to a smaller final RRU value. To better understand this
effect, consider a simple 2D single-detector scanner with
only two sources and two pixels. Based on the theory of
principle components, maximum uncertainty occurs along
eigenvectors of the covariance matrix. In this figure, the
estimation vector η̄ is a 2D vector and therefore we have only
two principal components. Our proposed method suggests
that each measurement should minimize the uncertainty left
in the estimation as much as possible. In other words, when
there is no constraint on source intensities, the algorithm
designs a measurement vector that is along with the largest
principal component of the estimation vector. After we make
the measurement, we update the covariance matrix using
(4) to search for the next illumination pattern. Note that
the covariance matrix update equation (4) consists of two
parts. The first part is the amount of uncertainty left in
other principal components and the second part, the term
Kn ¯̄R(Kn)T , is the noise uncertainty projected on the direc-
tion of current measurement(largest principle component). If
this noise component is larger than the next largest principal
component of the data, the same measurement is repeated
to reduce the effect of noise. This denoising effect, as seen
in Figure 1b, enhances the optimal illumination algorithm’s
performance in terms of scanning speed and ultimate RRU
value. This is a key fact that other scanning techniques, such
as raster scanning, overlook.

B. Multi-Detectors Scanner

In this section, the problem is seen from a more general
point of view which is multi-detectors scanner. Note that,
in this case, ¯̄W is a D × V matrix and noise uncertainty is
represented by noise covariance matrix ¯̄R. Once again, we
start the optimization by assuming that the weight matrix,
¯̄Wn, is constant and we minimize Tr( ¯̄Pn|n) with respect to

Kalman gain.

¯̄K∗n = ¯̄Pn|n−1( ¯̄Wn)T
[

¯̄Wn ¯̄Pn|n−1( ¯̄Wn)T + ¯̄R
]−1

. (8)

In a multi-detectors scanner, determining the best illumina-
tion pattern results in the following form:

Ī∗n = arg min
Īn
−2Tr

[
¯̄Kn ¯̄W (n) ¯̄Pn|n−1

]
+Tr

[
( ¯̄Kn ¯̄Wn) ¯̄Pn|n−1( ¯̄Kn ¯̄Wn)T

]
,

s.t. Imin
j ≤ Ij ≤ Imax

j , ∀j. (9)

where: ¯̄Wn = ¯̄G2 · diag( ¯̄G1 · Īn). (10)

The objective to be minimized in equation (9) is not
convex and therefore, finding the global optimum is not an
easy task. However, since the objective function is differen-
tiable with respect to Ī(n), we propose an algorithm to guide
us to an approximately optimal solution. We use a version
of the gradient descent method that can accommodate the
inequality constraint as well. The Projected Gradient Descent
(PGD) method is well-suited to this constrained optimization
problem, see figure 2.

Fig. 2: Optimal pattern algorithm in multi-detectors scanner.

Once the solution to problem (9) is found, we use equation
(10) to calculate the optimal weight matrix, ¯̄W ∗n. Then, we
assume ¯̄Wn is constant to compute the optimal Kalman gain
using equation (8). We continue till convergence.

To evaluate the performance of our method on a multi-
detectors scanner, we conducted simulations using an 8cm3

cubic phantom with two cylinders inside, located with an
edge-to-edge distance of 0.6cm and filled with fluorescent
agent. The cube and cylinders had the same height of 2cm
and the diameter of cylinder was set to 0.4cm. 8000 voxels
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Fig. 3: (a) Cubic phantom simulation setup, (b) cross-sections of fluorescence targets reconstructed via raster scanning (top
row) and optimal pattern method (bottom row) shown for different number of measurements.

were used to evenly mesh the phantom. We performed the
simulation with 36 sources and 27 detectors mounted on
opposing walls of the cubic scanner as shown in Figure 3a.
Optimal illumination pattern was obtained for each measure-
ment and the estimation was updated after each observation.
Raster scanning was also performed for comparison. Figure
3b shows the evolution of reconstructed cross-sections at
the depth of z = 14mm for both optimal illumination
pattern and raster scanning for different number of mea-
surements. Results show clearly that the optimal illumination
algorithm outperforms raster scanning. The two targets could
be identified after making 12 measurements using optimal
patterns, while raster scanning required 30 measurements to
reconstruct images of fluorescence objects with acceptable
quality.

III. DISCUSSION AND CONCLUSIONS

Data acquisition time is a determining factor in some
medical applications of tomography. Additionally, In cer-
tain types of tomography such as X-ray imaging or where
radioactive materials are used, the sample is exposed to
several doses of radiation while scanning, which can be
harmful. Therefore, in this study, we developed a sys-
tematic approach for optimizing the scanning process by
reducing the number of measurements required to achieve
satisfactory image quality. In the past, Fisher information
has been used for design of experiment. However, it only
provides partial optimization. In the case that there is no
prior information and detectors’ noises are independent,
the Kalman method proposed in this study converges to
Fisher information approach. In the proposed framework, a
definition for the achievable resolution of the scanner can
be provided, in which effective parameters in improving
image quality can be identified. Then, we can show how
our method incorporates these parameters, e.g., scanner
geometry and prior information, as resolution enhancing
factors. The proposed method also opens up the possibility
of optimizing the geometry of the scanner or the location of
sources/detectors to achieve superior efficiency. This could

be done by imposing additional constraints to the opti-
mization problem so that during each measurement optimal
location of sources/detectors are selected among all possible
pre-defined locations. In addition, the probabilistic approach
allows for the definition and incorporation of various sources
of uncertainty (e.g., state-dependent noise) that cannot be
separately identified in other deterministic approaches. The
efficiency of current work is even more significant in the
scanning of dynamically evolving objects which will be the
focus of future studies.
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