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Abstract— Crawling Waves Sonoelastography (CWS) is an
ultrasound elastography approach for the Shear Waves Speed
(SWS) estimation. Several studies show promising results
for tissue characterization. The algorithms used to calculate
the SWS have been commonly implemented considering an
opposing vibration sources to the side of the tissue of interest.
However, implementing this mechanical setup has important
limitations considering the geometry of the body. For that
reason, a propagation from the top to the surface can be
useful. Previous estimators such as Phase Derivative have
been modified and tested in phantom studies, however, the
presences of artifacts limited the performed of the SWS map.
In this study, the Regularized Wavelength Average Velocity
Estimator (R-WAVE) technique is modified and evaluated
(RWm) to be used for normal propagation. The results of
heterogeneous simulations and phantoms experiments showed
consistent results with the literature (ie: Simulations Max Bias
PDm 11.64 % · RWm 10.21 %, Max CNR PDm 37.82 dB ·
RWm 44.42 dB, Phantom Experiments Max Bias PDm 15.42
% · RWm 13.99 %, Max CNR PDm 24.14 dB · RWm 26.40
dB). The result of this study shows the potential of RWm to
characterize the stiffness of the tissue as well as to differentiate
tumors on in vivo applications.

Clinical relevance This study presents a modification of the
regularized shear wave speed estimator based on crawling
waves sonoelastography approach for medical tissue analysis.
This technique can be used to discriminate benignant from
malignant tumors.

I. INTRODUCTION

Elastography imaging is a set of non-invasive techniques
that study the elasticity of a tissue. These techniques are
commonly used such as complement to clinical diagnosis.
In particular, quantitative-ultrasound approaches are often
used for being low-cost technology and for their capability
to calculate the stiffness based on the Young’s module.
Tissue excitation is performed by acoustic radiation force
or mechanical vibration. However, the limitation of the
former is that the vibration of the tissue depends on ther-
mal effects of the transducer which can be limit to the
frequency range and safety condition. For that reason, there
is a particular interest in mechanical propagation. Crawling
Wave Sonoelastography (CWS), introduced by Zhe Wu et al.
[1], is a non-invasive, painless, and ambulatory quantitative
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elastography technique that uses Doppler Mode acquisition
modality to estimate shear wave propagation displacement in
tissue produced by external sources of vibration. Ex vivo and
in vivo experiments have been performed where bars were
used to generate the crawling waves (CrW) by vibrating the
sides (parallel setup) or the top of the medium (normal setup)
[2]. Several shear wave velocity estimators can be applied to
the shear waves propagation, which result in tissue elastic-
ity maps. In particular, Phase Derivative [3], has achieved
encouraging results for muscle characterization. However,
it presents relevant limitations such as the overestimation
at the boundaries or the presence of artifacts distributed
in the elasticity map. This has been greatly diminished by
the Regularized Wavelength Average Velocity Estimator (R-
WAVE) [4]; but it has not been implemented and tested for
normal propagation.

For this reason, the contribution of this study is the modi-
fication of the R-WAVE estimator (RWm) for its application
in normal surface propagation.

II. MATERIALS AND METHOD

A. Crawling Wave Sonoelastography - Normal setup

CWS is an ultrasound elastography technique where two
mechanical vibration sources placed at the same distance
from the transducer are used to create an interference moving
pattern [2] as described in the equation (1):
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where A1 and A2 are the vibration amplitudes, αs is the
attenuation of the tissue, ks is the shear wave number, ∆ω
is the difference between angular vibration frequencies, φ0
is a constant phase term, β is a function of the coordinate
system and the location of the vibration sources and r1 and
r2 are the distance from the sources.

B. Modified Phase Derivative Estimator

Shear wave speed (SWS) map can be calculated using
the modified Phase Derivative (PDm) estimator [5] which is
described in the equation (2).

SWS(x, z) =
2(2π(f + ∆f))Tx)

θ′(x)
.M(x, z), (2)
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where Tx is the pitch of the transducer, θ′(x) is the local
phase gradient and M(x,z) is a geometrical compensation
matrix described in the equation (3):

M(x, z) = (
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(x− d2)2 + z2
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(x− d1)2 + z2
).
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The use of the M(x,z) matrix is necessary for the calcula-
tion of the SWS since when using a normal propagation, its
value varies depending on the depth, so a compensation has
to be applied.

C. Modified Regularized Wavelength Average Velocity Esti-
mator

A modified version of R-WAVE is proposed based on
the framework of Gonzalez et al. [4]. Initially, the weighted
average speeds (Sav) over time must be calculated. A peak
detection algorithm was used to calculated the distance
between each peaks of the interference pattern along the
width of the crawling wave (Figure 1).

Fig. 1: Interference pattern along the lateral dimension at a
selected depth [4]

However, as it was previously described, the SWS in
normal propagation changes the wavelength in function of
the depth. Then, the following modification is proposed on
equation 5:

S′av = Sav.M(x, z) (4)

Therefore, an overdetermined system is generated and solved
with the Generalized Tikhonov Regularization approach [6]

x̂j = arg min [‖Axj − S′av‖
2

+ α2
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(|(Γxj)i|2 + β)
k
2 ],

(5)
where A is the weighted coefficient matrix map, S′av the
modified weighted average speeds and x̂j the unknown shear
wave speeds at depth j, α coefficient of regularization, and
Γ the Tikhonov matrix.

D. Simulations

Interference pattern propagation at six different frequen-
cies in the range of 200 Hz to 300 Hz (in 20 Hz steps) were
simulated. For each of them, two regions of interest (ROIs)
were used for the background (SWS 3.5 m/s) and inclusion

(SWS 5.1 m/s, radius 5 mm) of 7.6 mm x 7 mm. The
software used to create the simulations was MATLAB 2020a.
The pitch and the FR where 3.08e−4 and 15, respectively,
also 1000 axial samples, 337 lateral samples and 68 frames
were used for each simulation.

E. Data acquisition

A gelatin-based elasticity phantom of 13 cm x 13 cm x
9 cm with a 5 mm diameter inclusion was excited with two
mechanical sources separated 80 mm which were turned
upside down and placed at the top of the phantom using
rounded head couplings, vibrating at a range of frequencies
from 200 to 300 Hz in 20 Hz step. The SWS of the inclusion
and the background were estimated to be 5.1 m/s and 3.5
m/s using the time of flight (TOF) test at 20◦C. Data was
acquired with a SonixTOUCH Research System (Ultrasonix,
Richmond, Canada) using a L14-5/38 linear array operating
at 6.6 MHz central frequency at a depth of analysis of 4
cm. The SWS were calculated using PDm and RWm. For
each estimator, two ROI were taken for the background and
inclusion of 10 mm x 10 mm. Two retort stands where used
to attach the mechanical sources.

F. Pre-procesing

The color radiofrequency (CRF), data acquired by the
ultrasound probe in color doppler mode, is demodulated
to obtain in-phase and quadrature signals. The IQ data
is then processed using the autocorrelation-based spectral
variance estimator proposed by Miller et al. [7] to obtain
a sonoelasticity video. The estimated variance is normalized
along the lateral and temporal axis in order to reduce the
noise level.

To enhance the crawling waves Signal-to-Noise Ratio, a
2-D median filter and moving filter were applied [8]. The
moving filter consisted of applying the Fourier Transform to
each lateral-temporal image, obtaining the energy concen-
trated in two peaks of known frequency. Then, a band-pass
filter is applied based on a stiffness range of 2 - 6 m/s.

III. RESULTS

A. Simulations

Figure 2 shows representative examples of the results
where the interference pattern (a), the ideal SWS map (b), the
SWS of PDm (c), the SWS of RWm (d), the lateral profile (e)
and the axial profile (f) are obtained for a vibration frequency
of 200 Hz. The selected ROI of the background is delimited
by the two red squares. The ROI of the inclusion is delimited
by the black square. The α value for the simulations was
1.2. Additionally, Figure 3 shows the SWS results for the
background and the inclusion. A comparison of the SWS is
also appreciated with its ideal value for PDm (a) and RWm
(b).

The results for background SWS were PDm: 3.19 ± 0.05
m/s and RWm: 3.18 ± 0.03 m/s. Likewise, the background
coefficients of variation were PDm: 1.57 ± 0.04 % and
RWm: 2.65 ± 0.21 %. The background bias were PD: 8.66
± 1.34 % and RWm: 9.22 ± 0.82 %. On the other hand,
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(a) (b)

(c) (d)

(e) (f)

Fig. 2: (a) CWS interference pattern at 200 Hz, (b) Ideal
SWS map, (c) SWS PDm map, (d) SWS RWm map, (e)
Lateral profile of the center of the SWS map and (f) Axial
profile of the center of the SWS map .

the resulted inclusion SWS were PDm: 4.48 ± 0.14 m/s and
RWm: 4.61 ± 0.08 m/s. Likewise, the inclusion coefficients
of variation were PDm: 4.12 ± 0.21 % and RWm: 2.83 ±
0.35 %. The inclusion bias were PDm: 9.67 ± 1.42 % and
RWm: 5.98 ± 1.57 %. Additionally, the mean values of the
CNR were PD: 37.25 ± 0.37 dB and RW: 42.11 ± 1.49 dB.

B. Experiments

Figure 4 shows a representative result of the experiments
using 200 Hz. In this case, (a) shows the interference pattern,
(b) the B-Mode image, (c) the SWS of PDm, (d) the SWS
of RWm, and (e) and (f) the lateral and axial profiles. In the
elasticity maps, the shape of the inclusion is shown as a red
circle. Similarly, the ROI of the background is delimited by
the two blue squares and the ROI of the inclusion is inside
the black square. In addition, the results of the SWS for the
inclusion and background are observed in Figure 5, the CV
and bias results are shown in Figure 6 and the CNR results
are shown in Figure 7.

IV. DISCUSSION

The maximum bias and CV for the simulations were 11.64
% and 4.37 %, respectively. This shows that both estimators

(a) (b)

Fig. 3: SWS comparison in the range of 200 Hz to 300 Hz
in 20 Hz steps (a) Frequency [Hz] vs. SWS PDm [m/s] (b)
Frequency [Hz] vs. SWS RWm [m/s].

(a) (b)

(c) (d)

(e) (f)

Fig. 4: (a) Interference pattern (b) B-Mode image (c) SWS
PDm map (d) SWS RWm map (e) Lateral profile (f) Axial
profile.

are quite effective for ideal simulations and can estimate
SWS in all the required depth.

According to the physical experiments, RWm generates
a good performance in the bias of the background (max:
13%) in contrast with PDm (max: 15%). The CV of the
inclusion generates comparative results with an average of
6% in both cases. Similarly, bias and CV of the inclusion
generates comparative results both lower than 11%. Figure
6 and Figure 7 show that the RWm estimator has a better
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(a) (b)

Fig. 5: SWS comparison in the range of 200 Hz to 300 Hz
in 20 Hz steps (a) Frequency [Hz] vs. SWS PDm [m/s] (b)
Frequency [Hz] vs. SWS RWm [m/s].

(a) (b)

(c) (d)

Fig. 6: Frequency [Hz] vs. bias [%] (a) Background (c)
Inclusion. Frequency [Hz] vs. CV [%] (c) Background (d)
Inclusion.

performance compared to the PDm estimator. This effect is
more noticeable at low frequencies.

In the conventional parallel wave propagation, previous
reports mention border artifacts on the SWS estimation using
Phase Derivative. Gonzalez et al. successfully removed these
effects by using the R-WAVE estimator. Similarly, in the
normal setup, the artifacts are still present on PDm estimator
(Figure 4). Nevertheless, RWm leads to the solution of
this problem as well. Also, since RWm works horizontally,
the lateral profile in Figure 4 (e) of this estimator shows
a clear tendency to the ideal value compared to PDm.
Furthermore, in Figure 4 (f), although the PDm and RWm
axial profiles present noise components, the RWm one has a
better performance in the background due to the use of the
median filter. For that reason, it is recommended to create
an estimator that works both axially and laterally to obtain
a better improvement in this profile.

Finally, a selected range of 2 m/s - 6 m/s in the moving
filter was used to overcome the presence of the outliers.
However, considering that SWS values change according

(e)

Fig. 7: Contrast-to-Noise Ratio vs frequency using both
estimators in the range of 200 Hz to 300 Hz in 20 Hz steps.

to the depth of the tissue, the moving filter will not have
the same performance. Therefore, it would be recommended
to use alternative filter approaches that do not depend on
possible SWS values.

V. CONCLUSIONS AND FUTURE WORK

A modification of the R-WAVE SWS estimator for normal
propagation in CWS was proposed. The performance of the
algorithm was compared against PDm estimator providing
comparable results in the SWS map reconstruction according
to their bias, CV, and CNR. In addition, this approach reduces
the previously reported artifacts of PDm. Future work will
focus on an estimator that works both axially and laterally,
thus avoiding the use of a median filter that deals with the
axial non-regularization that is needed in RWm.
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