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Abstract— Crawling Wave Sonoelastography (CWS) is
an elastography ultrasound-based imaging approach that
provides tissue stiffness information through the calculation
of Shear Wave Speed (SWS). Many SWS estimators have
been developed; however, they report important limitations
such as the presence of artifacts, border effects or high
computational cost. In addition, these techniques require a
moving interference pattern which could be challenging for
in vivo applications. In this study, a new estimator based on
the Continuous Wavelet Transform (CWT) is proposed. This
allows the generation of a SWS image for every sonoelasticity
video frame. Testing was made with data acquired from
experiments conducted on a gelatin phantom with a circular
inclusion. It was excited with two vibration sources placed at
both sides with frequencies ranging from 200 Hz to 360 Hz in
steps of 20 Hz. Results show small variation of the SWS image
across time. Additionally, images were compared with the
Phase Derivative method (PD) and the Regularized Wavelength
Average Velocity Estimator (R-WAVE). Similar SWS values
were obtained for the three estimators within a certain region
of interest in the inclusion (At 360 Hz, CWT: 5.01±0.2m/s, PD:
5.11±0.28m/s, R-WAVE: 4.51±0.62m/s) and in the background
(At 360 Hz, CWT: 3.67±0.15m/s, PD: 3.69±0.23m/s, R-WAVE:
3.58±0.24m/s). CWT also presented the lowest coefficient of
variation and the highest contrast-to-noise ratio for most
frequencies, which allows better discrimination between
regions.

Clinical relevance— This study presents a new Shear Wave
Speed estimator for Crawling Wave Sonoelastography, which
can be useful to characterize soft tissue and detect lesions.

I. INTRODUCTION

Quantitative ultrasound elastography has been widely used
over the last thirty years to obtain information of the stiffness
for the characterization of soft tissues (e.g., muscle [1],
diabetic foot [2], liver [3]) as well as the detection of hard
lesions such as prostate tumors [4] [5]. This approach is
based on the tracking of shear waves in order to estimate
the Shear Wave Speed (SWS), since it is directly related
to tissue stiffness by the Young’s module. In that sense,
Crawling Wave Sonoelastography (CWS), is based on a
slowly moving interference pattern produced by two exter-
nal sources vibrating at slightly different frequencies. This
allows the acquisition of a SWS distribution map of the
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tissue [6] which has statistically reliable results compared to
mechanical measurements and other elastography techniques
[7].

In CWS, multiple methods have been developed to recon-
struct a SWS map given the tissue displacement. An initial
technique based on a cross-correlation approach proposed in
[8] uses the relationship between the spatial phase derivative
and local SWS. Subsequently, Hah et al. proposed the Phase
Derivative (PD) approach which is an alternative based on
taking the derivative along the slow time dimension [9]. Even
though both approaches have been tested, the report of high
variance due to artifacts in the background is still a limitation
on the SWS map. In addition, another method called the Reg-
ularized Wavelength Average Velocity Estimator (R-WAVE)
was proposed [10]. This estimator is based on the average
of the spatial wavelength of the signal. It also implements a
regularization method to cope with underestimation. Despite
exhibiting overall better performance than PD and the cross-
correlation approach, this last technique also presents a high
execution time. For these reasons, there is constant research
towards developing new algorithms for SWS estimation.

In this paper, a new estimator based on the Continuous
Wavelet Transform (CWT) is proposed. This transform uses
functions called wavelets to measure the presence of local
frequencies in the signal. For this reason, local spatial
frequency of the interference signal can be found and,
consequently, the SWS in a given region can be calculated.
Effectiveness of this new method will be assessed in data
collected from experiments in a gelatin phantom with a stiffer
inclusion at several frequencies. In addition, the results will
be compared with PD and R-WAVE estimators.

II. THEORY

A. Crawling Waves Sonoelastography

In the usual setup proposed by Wu et al. [11], two
mechanical sources with frequencies f and f+∆f are placed
at the sides of a tissue generating a displacement pattern due
to the superposition of both signals. This effect is described
by equation 1.

|u(x, t)|2 = 2e−αcDcos[(2k + ∆k)x+ ∆wt] (1)

where αC is the attenuation of the medium, D is the distance
between sources, k represents the wave number and ∆w =
2π∆f . Also, the shear wave speed is given by

cs =
w

k
=
f

ξ
(2)
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where ξ = k/2π is the spatial frequency of the original
signal. It is noted that the interference spatial frequency
ξ′, from (1) becomes approximately twice the true spatial
frequency:

ξ′ =
2k + ∆k

2π
≈ 2k

2π
= 2ξ (3)

Therefore, we can relate ξ′ to the shear wave speed with the
equation:

cs =
2f

ξ′
(4)

B. Continuous Wavelet Transform

In wavelet theory, the Continuous Wavelet Transform
(CWT) measures the similarity of a signal with basis func-
tions called wavelets, which are scaled or translated versions
from a function called the mother wavelet. It is defined by
the following:

W (a, b) =
1√
a

∫ ∞
−∞

ψ∗
(
x− b
a

)
f(x)dx (5)

Where ψ(x) is the mother wavelet, and a and b are the
scaling and translation parameters, respectively. The first
one determines the frequency of the scaled wavelet, and the
second one determines its position.

In the proposed estimator, a Morse wavelet was chosen
as the mother wavelet. The Fourier transform of the Morse
wavelet family is defined by:

Ψ(ω) = aP,γU(ω)e−ω
γ

ωP
2/γ (6)

Where aP,γ is the normalization constant, U(ω) is the unit
step function, P 2 is the time-bandwidth product and γ is a
parameter that characterizes the symmetry of the wavelet.
The value of γ was set to 3, as it generates the most
symmetric wavelet of the Morse family [12], and P 2 was
set to 4, as low values enhance spatial resolution.

The CWT is computed across the lateral dimension for
each frame and each depth slice of the sonoelasticity video,
as shown in Figure 1. Then, the value of a that gives

(a) (b)

Fig. 1: (a) Sonoelasticity video frame at 360 Hz. The CWT
is computed across the lateral dimension for each depth
slice. (b) CWT magnitude scalogram for 18 mm depth. The
maximum values for each x coordinate are calculated and
marked as a black line.

the maximum value of the Wavelet transform for every
x coordinate is found. The local spatial frequency of the
signal would become 1/a times the frequency of the mother
wavelet. Hence, using Eq. (4) a SWS map can be generated
for each frame.

III. MATERIALS AND METHODS

A. Experimental setup

The data was acquired from experiments conducted in
the framework of Romero et al [13]. A gelatin phantom of
13 cm x 13 cm x 9 cm with a 15.5 mm-diameter cylinder
inclusion at 10 mm from the top was elaborated for testing.
The ground truth SWS values were obtained using the time
of flight (TOF) test, resulting in 3.45 m/s for the background
and 5.1 m/s for the inclusion. The same setup used in [11],
with two vibrating parallel plates attached to the lateral sides
of the phantom, was used for frequencies ranging from 200
Hz to 360 Hz in 20 Hz steps. Color radio frequency data
was acquired from an ultrasound probe from a SonixTOUCH
Research System using a L14-5/38 linear array operating at
6.6 MHz at a depth of 4 cm. A sonoelasticity video was
obtained using Miller’s spectral moment estimator [14].

B. Pre-processing

The data was further processed using a 2D median filter
with a 0.87 mm x 0.89 mm window for each frame and
then normalized, eliminating the DC component. Moreover,
a directional gaussian filter on the two-dimensional Fourier
transform was applied to filter frequencies outside the usual
SWS range (2 m/s - 7 m/s).

C. Metrics

A SWS map was computed using the CWT for each
sonoelasticity frame. The coefficient of variation (CV) of
each frame was calculated. In addition, a selected region of
interest (ROI) in the inclusion of 11 x 11mm and two on
the background of 5.5 x 11mm were selected to measure
both parts of the phantom for each estimator. The mean
value, standard deviation, bias, CV and Contrast-to-Noise
Ratio (CNR) were evaluated to compare the results. This
last metric is defined by the following equation:

CNR = 20 log10

(
2 (µ1 − µ2)

2

σ2
1 + σ2

2

)
(7)

where µ1 and µ1 are the mean of the SWS, and σ1 and σ2
are the standard deviation inside and outside the inclusion,
respectively.

IV. RESULTS

Figure 2 (a) shows a representative result of the SWS
estimation for each frame using the CWT algorithm, as well
as Figure 2 (b) shows a CV map for each pixel. As it can be
appreciated, low values in each pixels were typically found,
especially at the center of the image, where the CV is usually
less than 2%. Then, for comparison purposes, a single SWS
image was generated by using the mean value of each pixel
across time.
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(a) (b)

Fig. 2: (a) Shear Wave Speed for each sonoelasticity crawling
wave frame at 360 Hz. (b) Coefficient of Variation in each
pixel of the Shear Wave Speed Map.

Afterwards, SWS images at several frequencies were ob-
tained using the three estimators. For R-WAVE, the regu-
larization parameter α was set to 1.2. Results for 360 Hz
are shown in Figure 3. The mean SWS for the inclusion
was 5.01 ± 0.2m/s for CWT, 5.11 ± 0.28m/s for PD and
4.51± 0.62m/s for R-WAVE. PD and CWT showed better
performance in the inclusion compared to R-WAVE, due to
high underestimation in the upper border. In the background
region, the mean SWS was 3.67 ± 0.15m/s for CWT,
3.69 ± 0.23m/s for PD and 3.58 ± 0.24m/s for R-WAVE.
CWT presented less variability in both regions, with a CV
of 3.94% in the inclusion and 4.01% in the background.

Figure 4 shows summarized data for several frequencies.
Similar performances for SWS mean in the three estimators
are observed with overestimation in the background region.
In the inclusion, most images show low bias (less than 5%),
yet R-WAVE appears to have abnormally high bias (more
than 10%) for frequencies ranging from 320 to 360 Hz due
to underestimation. In the background, PD has the higher
bias for frequencies above 280 Hz, and CWT appears to
have better performance for low frequencies (below 260 Hz).
Additionally, CWT exhibits the lower CV in the inclusion
for almost all frequencies. For the background region, this
occurs in frequencies higher than 280 Hz.

Similarly, CNR at different frequencies is shown in Figure
5. For most of them, CWT presents higher CNR values, and
overall it presents a higher average (PD: 25.52 dB, R-WAVE:
19.83 dB, CWT: 30.18 dB). In addition, CNR seems to
improve with higher frequencies, considering that the highest
value (35.5 dB) was obtained at 360 Hz.

V. DISCUSSION

The CWT estimator successfully generated a SWS image
in a heterogeneous phantom. Firstly, considering that this
approach generates a SWS map for every sonoelasticity
frame, results demonstrate that it is independent of the
interference pattern movement. The CV across time show
small variation between frames, especially below 10 mm
depth, as shown in 2. This represents an advantage in
contrast to other estimators, such as PD, which requires time
information about the interference pattern. In addition to this,

(a) B-mode (b) PD

(c) R-WAVE (d) CWT

Fig. 3: Images obtained at 360 Hz with various SWS
estimators.

because regions with artifacts present higher CV, it can also
serve as a quality measure.

Additionally, the metrics in 4 show that, like in the
PD method, low bias in the inclusion (less than 6.5%) is
obtained. CWT also provided a more stable image in most
frequencies, according to his CV inside the ROI. For this
reason, CWT provides high CNR compared to the other two
estimators, especially in higher frequencies (340 - 360 Hz),
as shown in 5. This allows better discrimination between
regions and is another advantage of this method.

While R-WAVE provides more accurate estimation in the
background region, high underestimation in the inclusion is
observed in images from higher frequencies (320 - 360 Hz),
like the one shown in 3(c). However, CWT and PD seem
to generate a better image. A possible reason for this is
that frequency analysis might be more effective to obtain
instantaneous frequencies in a noisy signal than the space-
domain analysis performed in R-WAVE.

Finally, the proposed estimator also has some limitations,
such as artifacts at the border. This effects are common when
using the CWT because stretched wavelets extend beyond the
edges of the signal, therefore, to compute the algorithm, the
signal must be expanded. In this paper, each sonoelasticity
video frame was extended periodically along the horizontal
axis to obtain a stable SWS video. Consequently, higher SWS
values are found at the border, which might be misleading
and indicate the presence of non-existent stiffer regions. Nev-
ertheless, results at the center of the image give an accurate
estimation of SWS and show overall better performance than
previously developed estimators.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4: SWS [m/s] mean of ROI of (a) Inclusion (b) Back-
ground. Bias[%] for (c) Inclusion (d) Background. CV[%]
for (e) Inclusion (f) Background.

Fig. 5: CNR among different frequencies.

VI. CONCLUSIONS AND FUTURE WORK

A new shear wave speed estimator for CWS based on the
CWT was proposed. Preliminary results on heterogeneous
phantoms show that the algorithm provides a stable SWS
video and has high accuracy in comparison to other estima-
tors such as PD and R-WAVE. It also has a higher CNR,
which allows better discrimination of abnormal regions.
However, the image seems to have irregular borders, which
may affect accuracy and lead to false positives. Future work
might include optimization to improve execution time and
develop real-time applications, signal extension techniques

to address artifacts at the border and applications of the
algorithm with other experimental setups such as normal
excitation.
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