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Abstract— In this paper, we introduce PulseLab, a compre-
hensive MATLAB toolbox that enables estimating the blood
pressure (BP) from electrocardiogram (ECG) and photoplethys-
mogram (PPG) signals using pulse wave velocity (PWV)-based
models. This universal framework consists of 6 sequential
modules, covering end-to-end procedures that are needed for
estimating BP from raw PPG/ECG data. These modules are
“dataset formation”, “signal pre-processing”, “segmentation”,
“characteristic-points detection”, “pulse transit time (PTT)/
pulse arrival time (PAT) calculation”, and “model validation”.
The toolbox is expandable and its application programming
interface (API) is built such that newly-derived PWV-BP models
can be easily included. The toolbox also includes a user-
friendly graphical user interface (GUI) offering visualization
for step-by-step processing of physiological signals, position of
characteristic points, PAT/PTT values, and the BP regression
results. To the best of our knowledge, PulseLab is the first
comprehensive toolbox that enables users to optimize their
model by considering several factors along the process for
obtaining the most accurate model for cuff-less BP estimation.

I. INTRODUCTION

Cuff-less blood pressure (BP) estimation methods have
been long pursued as substitutions for the conventional BP
measurement methods, such as auscultation, oscillometry,
volume clamping, and catheterization, to facilitate continuous
and automatic monitoring of BP. The “model-driven” meth-
ods constitute one class of cuff-less BP estimation methods.
Model-driven methods are developed based on the models
that describe the relationship between the pulse wave velocity
(PWV) and the BP. To date, several PWV-BP models have
been derived and used in BP-estimation studies. Examples
include the logarithmic model [1], the linear model [2], the
inverse model [3], the inverse square model [4], and the mean
BP model [5].

Several factors influence the BP estimation accuracy of the
model-driven methods. For example, it has been shown that
defining the characteristic points differently [6] or variability
in extracting pulse transit time (PTT)/ pulse arrival time
(PAT) [7] can affect the regression performance. It has also
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Fig. 1: Functions implemented in the API of PulseLab.

been shown [8] that the type of filters used in the pre-
processing step of physiological signals could change the
position of characteristic points, and hence, influencing the
BP estimation accuracy. It is therefore important to be able to
consider various options for pre-processing of physiological
signals, definitions of characteristic points, and the choice of
PWV-BP models, all in one place, to derive the most accurate
BP-estimation model.

Currently, a number of toolboxes and graphical user inter-
faces (GUIs) exist that enable pre-processing, visualization
and analysis of cardiovascular signals, but none targets the
problem of BP estimation, and each has its own limitations
for this application. For example, general signal processing
toolboxes such as the MATLAB’s built-in Signal Processing
Toolbox provide the capabilities of filtering and segmentation
to pre-process raw physiological signals, but they are not
designed for further signal analysis required for BP estima-
tion. Dedicated cardiovascular signal processing toolboxes
such as the ecg-kit [9], the WFDB [10] or the Bio-SP [11]
are capable of pre-processing and analyzing the quality of
physiological signals such as electrocardiogram (ECG), pho-
toplethysmogram (PPG) and impedance cardiogram (ICG),
that are being frequently used in model-driven BP estimation
studies, but are designed to analyze each signal individually
and lack the capability of extracting PWV indicators, and
doing regression analysis. Therefore, to the best of our
knowledge, no existing biomedical signal processing toolbox
has the full capability of supporting the needs for model-
driven cuff-less BP estimation studies.

In this paper, we present PulseLab, a MATLAB toolbox,
which offers a unified framework for end-to-end model-
based BP estimation. The proposed toolbox consists of
6 modules: “dataset formation”, “signal pre-processing”,
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Fig. 2: Main appearance of the PulseLab GUI. The panels in the File Input and Signal Preprocessing tab and the Individual
BP Fitting tab are displayed.

“segmentation”, “characteristic points detection”, “PTT/PAT
calculation”, and “model validation”. The framework is im-
plemented as an application programming interface (API),
therefore, it can easily be expanded to include newly-derived
PWV-BP models. The toolbox comes with a user-friendly
GUI that provides visualization of the end-to-end BP esti-
mation process, including plots of physiological waveforms,
positions of characteristic points, extracted PAT/PTT values,
and regression plots, which change dynamically after every
parameter modification, offering feedback to user for better
parameter tuning.

The rest of the paper is as follows. In Section II we
describe the API and GUI of PulseLab. In Section III,
we present testing examples of using this toolbox for BP-
estimation based on real data. Finally the paper is concluded
in Section IV.

II. METHODS

A. Architecture of API in PulseLab

The 6 modules in the API of the PulseLab are shown
in Fig. 1. The modules are implemented with functions
belonging to two classes: the Signal class and the Signal Set
class. The use of decorator design pattern is maximized in
every module to enable easy renewal of all key functions, to
conform with the rapid evolving BP estimation algorithms.
The Append and Set functions in Fig. 1 load exterior
objects to the Signal class and Signal Set class, which
define the behavior of functions such as Signal.Denoise()
or Signal Set.TrainModel() relating to all key operations in
signal pre-processing, signal quality evaluation, characteristic
points detection, selection of PAT/PTT values (postprocess-
ing), and formation of PWV-BP models. As such, new
methods can be easily added and used with the API without
making modification to the framework itself, which results
in maximal code re-usability.

B. PulseLab GUI

The main appearance of the GUI and its different pan-
els/options are shown in Fig. 2. The three tabs on the left
side offer the operations for loading and pre-processing of
raw physiological signals, and PAT/PTT extraction. The three
tabs on the the right side conduct regression analysis between
extracted PAT/PTT values and the reference BPs. In what
follows, we describe some of these capabilities in more
details.

- The File Input and Signal Processing tab, offers the pan-
els for loading the input raw ECG/PPG/reference BP data (in
the .mat format), and visualization of the loaded waveforms
(in time and frequency). The “Preprocess Settings” section
in this panel offers various filter choices (such as FIR or IIR
filters).

- The Peak Detection and PAT/PTT Extraction tab, of-
fers the panels for segmenting signals and extracting the
characteristic points/PAT/PTT from the signals. PAT/PTT are
defined as the time difference between the characteristics
points of the ECG and PPG signals within the same cardiac
cycle. In the example shown in Fig. 3a, the synchronized
ECG and PPG signals, both with 10-second duration, are
segmented into five 2-second windows that include 1∼2
beat(s). One window, for ECG as “Signal1” (the proximal
signal) and for PPG as “Signal2” (the distal signal), is
displayed in Fig. 3a. By rolling the “Window Position”
option, the user can inspect each cycle of the ECG/PPG
signal to ensure proper PAT/PTT extraction.

The GUI also offers the options to exclude windows
with poor signal quality by applying a threshold on the
evaluated signal quality index (SQI). The GUI considers
kurtosis (kSQI) and spectral SQI for the ECG signal [12],
and skewness SQI (sSQI) for the PPG signal [13] as SQI.
Examples of setting spectral SQI for an ECG recording and
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(a)

(b)

Fig. 3: Panels in the Peak Detection and PAT/PTT Extraction
tab in the PulseLab GUI, offering options and settings for
signal segmentation, detection of characteristic points, and
PAT/PTT calculation. (a): The “Signal1” tab displays prox-
imal signal settings, including the SQI and the detection of
the characteristic points. (b): Left- The “Signal2” tab displays
distal signal settings, including the SQI and the detection of
characteristic points; Right- Settings for removing outliers
from extracted PAT/PTT values (postprocessing).

sSQI for a PPG recording are demonstrated in Fig. 3a and
the left figure of Fig. 3b, respectively.

The panels in Fig. 3a and the left figure of Fig. 3b
also list options conforming with different definitions of
characteristic points, such as the R-peak of the ECG signal
and the foot point, maximum slope and the systolic peak of
the PPG signal. The example shows selecting R-peak for the
ECG signal and the maximum slope for the PPG signal. The
“Signal 1” and “Signal 2” figures in Fig. 3a change according
to these settings, with blue curves indicating signal with
acceptable quality, and red circles indicating the position of
the characteristic points.

Once the characteristic points have been located for both

(a)

(b)

Fig. 4: The panel in the Overall BP Fitting tab in the
PulseLab GUI. (a): The regression plot and the Bland-
Altman plot of Dataset1 (red circles) among all estimated and
reference BP values in the whole database (blue circles). (b):
The regression plot and Bland-Altman plot for all estimated
and reference BP values in the whole database (red circles).

proximal and distal signals, the values of PAT/PTT are auto-
matically calculated for every window, and are listed under
the “Extracted Window PAT” (see Fig. 3a). The values under
the “Selected PAT” show the extracted PAT/PTT values for
all windows. These values are also displayed as a histogram
under the “Segment PAT Histogram”, which can aid the user
to remove PAT/PTT outliers with the post-processing settings
listed in the right figure of Fig. 3b.

- The File Output tab (not shown), offers saving the
settings and results for the current analysis to files. Previous
settings can be restored from these saved files using the “File
Load” panel displayed in Fig. 2.

- The Individual BP Fitting tab offers the panel for select-
ing a PWV-BP model and for fitting the extracted PAT/PTT
values to the reference BP values (see Fig. 2, in which the
inverse square model has been chosen). Regression metrics
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TABLE I: Implementation of 5 testing examples using the PulseLab toolbox.

Implementation With PulseLab Overall BP Estimation Performances

Settings No. Signal1 Characteristic Point 1 Signal2 Characteristic Point 2 PWV-BP Model R (SBP) ME±SD (SBP) R (DBP) ME±SD (DBP)

1 ECG R-peak fingertip PPG foot point Logarithmic 0.908 -0.512±8.793 0.904 -0.148±3.622

2 ECG R-peak fingertip PPG foot point Inverse 0.916 -0.008±8.203 0.913 0.078±3.448

3 ECG R-peak fingertip PPG foot point Inverse Square 0.920 -0.358±8.084 0.907 0.066±3.574

4 ECG R-peak fingertip PPG maximum slope Inverse Square 0.926 0.311±7.736 0.905 0.176±3.599

5 ECG R-peak fingertip PPG systolic peak Inverse Square 0.922 -0.180±7.836 0.906 0.015±3.551

including Pearson’s correlation coefficients (R), mean error
(ME) and mean absolute error (MAE) are calculated and
reported for both the systolic blood pressure (SBP) and
the diastolic blood pressure (DBP). The regression plot, the
Bland-Altman plot and the BP variation plots (visualizing
how estimated BPs track the variation in reference BPs) are
also displayed in this panel. These regression results change
dynamically if any of the parameters and settings in the
tabs on the left side of GUI needs to be tuned or modified,
providing real-time feedback to the user for optimizing the
model.

- The Overall BP Fitting tab, offers the panel for perform-
ing general regression analysis across all subjects, in case
there are multiple subjects in the database. PAT/PTT values
extracted for each subject are saved within the File Output
tab, and are loaded to this panel for overall analysis. The user
can examine the performance of each dataset individually
(Fig. 4a), or the overall performance by merging all reference
and estimated BP values (Fig. 4b).

- The Specific Model Testing tab (not shown), offers the
panel for training a model with some data, then testing the
model on others. This can be useful for cases when one
subject has multiple recordings in the database.

III. RESULTS

To demonstrate the applicability of the proposed toolbox
for BP estimation, we used data from 18 healthy subjects
(aged from 25 to 58). ECG and fingertip PPG signals
recorded at 10 kHz for each subject were downsampled
to 1 kHz. The reference values for SBP and DBP were
recorded using a cuff-based Omron 10 BP786N blood pres-
sure monitor. During measurement, variations in BP values
were created via physical exercises (running and stair climb-
ing). Data was collected under an IRB-approved protocol at
Metrohealth System.

We implemented five testing examples with the PulseLab
toolbox and our data. The combinations of module settings
and the BP estimation performances are summarized in Table
I. As can be seen, for this dataset, the combination of
extracting PAT with PPG maximum slope, and using the
inverse square model to estimate BP from PAT, produces
the best SBP prediction results, while using PPG foot point
to extract PAT, and inverse model to estimate BP, produces
the best DBP prediction results.

IV. CONCLUSION

In this paper, we introduced PulseLab, an end-to-end
MATLAB toolbox for implementing model-driven cuff-less
blood pressure estimation methods. The toolbox includes

both API and GUI and offers graphical visualization at
different steps of processing to aid with optimum parameter
tuning. The toolbox can be easily expanded owing to the
decorator design pattern in all key operations, which enables
for the new functions, methods and algorithms to be added
with no modification to the main framework of the API
and GUI. The toolbox is capable of including various BP
estimation algorithms. As such, the PulseLab toolbox is an
integrated and expandable toolbox that is expected to be
very useful for studies related to model-driven cuff-less BP
estimation.
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