
  

  

Abstract— Parkinson’s disease (PD) is a progressive 

neurodegenerative disorder resulting in abnormal body 

movements. Postural instability is one of the primary motor 

symptoms of PD and contributes to falls. Measurement of 

postural sway through center of pressure (COP) data might be 

an objective indicator of Parkinson’s disease. The goal of this 

work is to use machine learning to evaluate if different features 

of postural sway can differentiate PD patients from healthy 

controls. Time domain, frequency domain, time-frequency, and 

structural features were extracted from COP data collected 

from 19 PD patients and 13 healthy controls (HC). The 

calculated parameters were input to various machine-learning 

models to classify PD and HC. Random Forest outperformed the 

rest of the classifiers in terms of accuracy, false negative rate, F1-

score, and precision. Time domain features had the best 

performance in differentiating PD from HC compared to other 

feature groups. 

 

I. INTRODUCTION 

Parkinson’s disease (PD) is a neurodegenerative disease 
resulting in tremors, muscle rigidity, bradykinesia, and 
postural instability. Postural instability can contribute to an 
increased risk of falls and injuries, and early postural 
unsteadiness is associated with more rapid disease progression 
[1]. While evidence of postural instability tends to emerge in 
moderate to late stages of PD, measures of biomechanical 
variables can detect differences in postural sway in patients 
with mild PD motor symptoms compared to healthy age-
matched controls [2, 4]. 

Impairment of postural control is evident in the aging 
process and is often related to changes in the sensorimotor 
systems required for postural control [5]. These same systems 
influence postural control in PD, in addition to age, disease 
progression, orthostatic hypotension, gait disturbances, 
dopamine replacement therapy, and muscle loss and weakness 
[6]. Center of pressure (COP) refers to the point where the 
pressure of the body over the soles of the feet is concentrated. 
The deviations in the location of COP from its origin can be 
used to quantify body sway. Measures of center of pressure 
(COP) can differentiate between young and older adults in a 
passive standing position [3, 4]. Various COP measures have 
also been used in the evaluation of postural instability in PD, 
although there is significant variability in comparison groups, 
ON-OFF states, and sensory manipulations [2, 7, 8]. 
Compared to previous research, our study evaluated PD 
patients in ON state, during an eyes-open, passive standing 
position similar to their experience on a daily basis. Due to the 
subjective nature of traditional motor symptom assessments, 
we used a machine learning approach to identify COP 

 
 

 

 

 

variables and methods of analysis that were best able to 
classify PD patients from healthy controls (HC). Global 
variables in time and frequency domains allow for more 
conclusive evaluations of the contributing factors to postural 
unsteadiness. In the same manner, structural analyses were 
designed to capture dynamic postural changes during standing 
[9]. 

II. MATERIALS AND METHODS 

A. Dataset 

Participants were required to lie supine on a tilt table for 5-
minutes of baseline recording, followed by tilting the table to 
70 degrees for 15 minutes to induce an orthostatic challenge. 
After which, participants were asked to stand upright on a 
force platform (AMTI's AccuSway Optimized™ multi-axis 
force platform) with their heads facing forward for 5 minutes. 
COP data were recorded from 19 patients with PD (age: 65 ± 
5 years; height; 172 ±9 cm; weight: 110± 6 kg) and 13 healthy 
controls (HC; age: 67± 8 years; height: 164±9 cm; weight: 
71±9 kg) in the standing position, and at a sampling frequency 
of 2 kHz. COP data (in mm) for each subject were split into 
medio-lateral (ML) and anterior-posterior (AP) components. 
All data were recorded at the Sanford Brain & Spine Center in 
the Parkinson’s Research Laboratory, Fargo, ND, US. We 
terminated the experiment immediately if the participant 
showed signs of discomfort, uneasiness, nausea, or upon 
request. The Sanford Health IRB approved the protocol (IRB 
#1445) and we obtained written informed consent from all 
participants. 

B. Features Extraction 

COP signals (ML and AP) were low-pass filtered at a 
cutoff frequency of 20 Hz and then resampled to 100 Hz before 
further processing. The resampled AP and ML time series 
were referenced to their means. The last 4 min of standing data 
were used to extract a set of 30 handcrafted features. The 
extracted features are a combination of time (distance) and 
frequency domain features, time-frequency domain features, 
and structural features. This research is not concerned with 
making an exhaustive list of all of these features, so only the 
most common and relevant are considered here and discussed. 
All features used in this work are listed in Table 1. 

a) Time Domain Features 

Time domain features measure postural sway by estimating 

a parameter correlated with either the COP's displacement 

from the stabilogram's central point or its velocity [4, 10]. 

The mean distance represents the average distance from the 

mean COP. Based on the total distance traveled, path length 
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quantifies the magnitude of the two-dimensional 

displacement. The shorter the path length, the better the 

postural stability. It is considered a reliable outcome 

measure in a variety of populations and equilibrium 

conditions. The ellipse area measures 95% of the total area 

covered in the ML and AP directions. This parameter 

measures the overall postural performance (a smaller area 

reflects better performance). Mean sway velocity is 

calculated by summing the resultant distance between 

consecutive points on the COP path divided by time. 

Resultant velocity, for each of the AP and ML components, 

reflects the efficiency of the postural control system (a 

smaller velocity reflects better postural control). 

b) Frequency Domain Features 

Frequency domain parameters of COP describe the 

preferential involvement of specific neuronal loops in 

postural control [9]. This is performed by integrating 

amplitudes within low frequency (0–0.5 Hz) bands, which 

mostly account for visuo-vestibular regulation, medium 

frequency (0.5–2 Hz) for cerebellar participation, and high 

frequency (2–20Hz) for proprioceptive participation [9, 11, 

12]. Spectral analyses of COP sway were analyzed using 

Fast Fourier Transform (FFT) to calculate the power 

spectral density areas for AP and ML data in these three 

frequency bands. 

c) Structural Features 

Structural features of the COP signal function explain the 

non-linear and complex nature of the postural control 

system. The stabilogram diffusion analysis (SDA) approach 

analyzes the dynamic properties of the COP signal [9]. 

Using SDA, two distinct patterns of postural regulation 

emerged, reflecting short-term sway movement from 

equilibrium without recovering (open-loop) and long-term 

oscillations back and forth around equilibrium (closed-

loop). Diffusion coefficients and scaling exponent values 

extracted from SDA analysis showed to be an objective 

measurement of postural instability considering the ML and 

the AP axis as well as the plane of support [13, 14]. Other 

COP structural features are based on fractal analysis, which 

provide additional information about the underlying 

dynamics of postural sway. Fractal dimension methods 

detect chaos in COP signals, with sensitivity to capture 

small changes in postural control caused by age, visual 

disturbances, or neurological pathologies [9]. Sample 

entropy is another nonlinear dynamic parameter extracted 

from AP and ML postural data to measure the irregularity 

of COP signals (the higher the sample entropy value, the 

more irregular the COP time series). The regularity of 

postural sway is representative of the efficiency of its 

control system, with lower sample entropy in neurologically 

pathological patients compared to healthy controls [9, 13]. 

a) Time-Frequency Domain Features 

Time-frequency analysis quantifies changes in a signal's 

spectral characteristics over time [15]. Empirical mode 

decomposition (EMD) of COP data extracts intrinsic mode 

functions (IMFs). IMFs are the local oscillations that make 

up the signal, as well as the residual, which represent the 

local patterns of the COP. The IMFs can be thought of as a 

set of narrow band non-stationary signals. In EMD, each 

IMF is a function with symmetric upper and lower 

envelopes, and the number of extrema and the number of 

zero crossings must be the same or differ at most by one. 

 

 

 

 

TABLE I. LIST AND DESCRIPTION OF FEATURES EXTRACTED 

FROM COP DATA AND USED IN MACHINE LEARNING 

ALGORITHMS. 

 
Time Domain Features 

The average distance from the mean COP 

The average ML distance from the mean ML displacement 

The average AP distance from the mean AP displacement 

Root-mean-square distance of the center of pressure data 

Root-mean-square distance of the ML data 

Root-mean-square distance of the AP data 

Average velocity of COP  

Average velocity of the COP in the ML direction 

Average velocity of the COP in the AP direction 

 95% confidence ellipse area of the COP data 

The first axis of the 95% confidence ellipse 

Empirical Mode Decomposition 

Minimum of the 6th intrinsic mode function for AP data 

Coefficient of variation of the 4th intrinsic mode function for AP 
data 

Minimum of the 1st intrinsic mode function for ML data 

Range of the 1st intrinsic mode function for ML data 

Stabilogram Diffusion Analysis 

Scaling exponents of the short-term region of AP data 

Scaling exponents of the short-term region of ML data 

Scaling exponents of the short-term region of the COP data 

Power spectral features 

Total power spectral density area for ML data 

Power spectral density area for ML data in the low frequency 
band 

Normalized power spectral density area for ML data in the low 

frequency band 

Normalized power spectral density area for ML data in the high 

frequency band 

Ratio of medium frequency to high frequency power spectral 

density areas for ML data 

Power spectral density area for AP data in the high frequency 

band 

Power spectral density area for AP data in the medium frequency 
band 

Normalized power spectral density area for AP data in the high 

frequency band 

Ratio of medium frequency to high frequency power spectral 

density areas for AP data 

Sample Entropy 

Sample entropy of AP data 

Sample entropy of ML data 

Fractal Dimension 

Higuchi fractal dimension of the ML data 
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Unlike the Fourier transform and wavelet analysis, EMD 

makes no assumptions about the signal's composition and 

does not depend on any particular wavelet basis. Statistical 

features such as mean, minimum, maximum, coefficient of 

variation, skewness, variance, and kurtosis can be extracted 

from different IMFs obtained from ML and AP time series 

and can characterize postural sway [16, 17]. 

Each of these feature groups has the potential ability to 

describe different aspects of sway and can differentiate 

between subject groups. However, the set of parameters that 

can discriminate between PD patients and healthy older adults 

using machine learning is yet to be investigated. 

C. Classification 

In this work, we evaluated the performance of different 

machine learning models in discriminating between PD 

patients and healthy older adults. These techniques include 

Random Forest, Support Vector Machine (SVM), Decision 

Tree, K-Nearest Neighbor, Neural Network (NN), and 

Gaussian Naive Bayes. Each model was trained and tested 

using a stratified 5-fold cross-validation procedure in which 

the feature set and corresponding groups (PD and HC) were 

divided into 5 non-overlapping splits. Four of the splits (80 

percent of the data) were used for training and the remaining 

split (20 percent of the data) was used for testing. The process 

was repeated 5 times, each one using a different split on the 

data for testing. To assess the performance of the proposed 

method, accuracy, false negative rate (FNR), F1-score, and 

precision [18]. In this work, a false-negative response is more 

important than a false-positive answer because the former 

might lead to a delayed diagnosis of PD patients. 

III. RESULTS AND DISCUSSION 

The obtained results for the considered classifiers are 

shown in Table II. On average, RF outperformed the rest of 

the classifiers while considering all metrics. K-Nearest 

Neighbor presented the worst performance in terms of 

accuracy, false negative rate, and F1-score. We believe this is 

because K-Nearest Neighbor performance declines when the 

dimension of data is high. Random Forest did well in 

classifying PD with an F1-score of 0.83, and a precision of 

0.87 compared to HC. Moreover, Random Forest has a lower 

FNR (0.15 vs 0.23) in predicting PD compared to HC (Fig. 

1).  

Random Forest performed better in all metrics when 

trained on time domain features compared to the frequency 

domain, structural and EMD features. It was able to 

outperform the initial model that was trained with 30 

parameters (Fig. 2). EMD features also achieved promising 

results in terms of accuracy, F1-score, and precision when 

compared to the frequency domain and structural features. 

Moreover, EMD features correctly identified 90% (FNR = 

0.1) of the Parkinson’s patients in the testing dataset (Fig. 3) 

compared to the rest of the feature categories.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Performance results of Random Forest in differentiating between 

PD patients and healthy controls when considering different feature groups 

 

Figure 1.  Performance results of Random Forest on the set of 30 

features 

Figure 3.  False Negative Rate of Random Forest for detecting PD when 
considering different feature groups 

 

Classifier Accuracy FNR F1-score Precision 

Random 

Forest 

0.81 0.19 0.8 0.86 

NN 0.79 0.25 0.75 0.85 

Gaussian 

Naive Bayes 

0.78 0.21 0.77 0.80 

SVM 0.72 0.23 0.80 0.67 

Decision 
Tree 

0.70 0.29 0.69 0.71 

K-Nearest 

Neighbor 

0.64 0.39 0.60 0.69 

 

 TABLE II.  RESULTS COMPARISON OF DIFFERENT CLASSIFIERS  
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IV. CONCLUSION 

 

In this study, various machine-learning approaches were 

investigated along with different feature categories to 

differentiate PD patients from healthy controls. The most 

suitable classifier was found by testing Random Forest, 

Support Vector Machine, Decision Tree, K-Nearest 

Neighbor, Neural Network, and Gaussian Naive Bayes. The 

best classification performance was obtained using Random 

Forest and time domain features, while empirical mode 

decomposition parameters showed promising results and have 

the potential to discriminate PD patients from HC. Overall, it 

is believed that the proposed sway features coupled with a 

machine learning approach have the potential for clinical 

application in the early diagnosis and detection of Parkinson’s 

disease.  

 

REFERENCES 

 

[1] Jankovic et al., “Variable Expression of Parkinson’s Disease: A 

base-line analysis of the DAT ATOP cohort,” Neurology, vol. 40, 

pp. 1529–1534, 1990. 
[2] N. Chastan, B. Debono, D. Maltête, and J. Weber, “Discordance 

between measured postural instability and absence of clinical 

symptoms in Parkinson’s disease patients in the early stages of 

the disease,” Mov. Disord., vol. 23, no. 3, pp. 366–372, 2008, doi: 

10.1002/mds.21840. 
[3] B. Tests, “Aging and Postural Control,” pp. 1–9, 1990. 

[4] T. E. Prieto, J. B. Myklebust, R. G. Hoffmann, E. G. Lovett, and 

B. M. Myklebust, “Measures of postural steadiness: Differences 

between healthy young and elderly adults,” IEEE Trans. Biomed. 
Eng., vol. 43, no. 9, pp. 956–966, 1996, doi: 10.1109/10.532130. 

[5] R. Johansson and M. Magnusson, “Human PosturalDynamics,” 

Crit Rev. Biomed. Eng., vol. 18, pp. 413–437, 1991. 

[6] S. Grill, “Postural instability in Parkinson’s disease.,” Md. Med. 

J., vol. 48, no. 4, pp. 179–181, 1999. 
[7] M. Mancini, P. Carlson-Kuhta, C. Zampieri, J. G. Nutt, L. Chiari, 

and F. B. Horak, “Postural sway as a marker of progression in 

Parkinson’s disease: A pilot longitudinal study,” Gait Posture, 

vol. 36, no. 3, pp. 471–476, 2012, doi: 

10.1016/j.gaitpost.2012.04.010. 
[8] J. M. Schmit et al., “Deterministic center of pressure patterns 

characterize postural instability in Parkinson’s disease,” Exp. 

Brain Res., vol. 168, no. 3, pp. 357–367, 2006, doi: 

10.1007/s00221-005-0094-y. 

[9] T. Paillard and F. Noé, “Techniques and Methods for Testing the 
Postural Function in Healthy and Pathological Subjects,” Biomed 

Res. Int., vol. 2015, 2015, doi: 10.1155/2015/891390. 

[10] Bigelow, Kimberly Edginton. "Identification of key traditional 

and fractal postural sway parameters to develop a clinical protocol 

for fall risk assessment in older adults." PhD diss., The Ohio State 
University, 2008. 

 [11] Suzuki, Makoto, Hiroyuki Fujisawa, Hiroto Suzuki, Shingo 

Kawakami, Kenichi Murakami, and Chie Miki. "Frequency 

analysis of the center of pressure in tandem stance in community-

dwelling elderly." Journal of physical therapy science 29, no. 5 
(2017): 828-831. 

[12] Baratto, Luigi, Pietro G. Morasso, Cristina Re, and Gino Spada. 

"A new look at posturographic analysis in the clinical context: 

sway-density versus other parameterization techniques." Motor 

control 6, no. 3 (2002): 246-270. 
[13] Rizzato, Alex, Gerardo Bosco, Michael Benazzato, Antonio Paoli, 

Giulia Zorzetto, Attilio Carraro, and Giuseppe Marcolin. "Short-

term modifications of postural balance control in young healthy 

subjects after moderate aquatic and land treadmill 

running." Frontiers in physiology 9 (2018): 1681. 
[14] Peterka, Robert J. "Postural control model interpretation of 

stabilogram diffusion analysis." Biological cybernetics 82, no. 4 

(2000): 335-343. 
[15] Schumann, Timothy, Mark S. Redfern, Joseph M. Furman, Amro 

El-Jaroudi, and Luis F. Chaparro. "Time-frequency analysis of 

postural sway." Journal of biomechanics 28, no. 5 (1995): 603-

607. 

[16] Pachori, Ram Bilas, D. J. Hewson, Hichem Snoussi, and Jacques 
Duchêne. "Analysis of center of pressure signals using empirical 

mode decomposition and Fourier-Bessel expansion." In TENCON 

2008-2008 IEEE Region 10 Conference, pp. 1-6. IEEE, 2008. 

[17] Chou, Li-Wei, Kang-Ming Chang, Yi-Chun Wei, and Mei-Kuei 

Lu. "Empirical Mode Decomposition-Derived Entropy Features 
Are Beneficial to Distinguish Elderly People with a Falling 

History on a Force Plate Signal." Entropy 23, no. 4 (2021): 472. 

[18] Fadil, Rabie, Andie Jackson, Badr Abou El Majd, Hassan El 

Ghazi, and Naima Kaabouch. "Classification of 

Microcalcifications in Mammograms using 2D Discrete Wavelet 
Transform and Random Forest." In 2020 IEEE International 

Conference on Electro Information Technology (EIT), pp. 353-

359. IEEE, 2020. 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

2436


