
  

  

Abstract— Individuals with type 1 diabetes (T1D) need life-
long insulin therapy to compensate for the lack of endogenous 
insulin due to the autoimmune damage to pancreatic beta-cells. 
Treatment is based on basal and bolus insulin, to cover fasting 
and postprandial periods, respectively, according to three 
insulin dosing parameters: basal rate (BR), carbohydrate-to-
insulin ratio (CR), and correction factor (CF). Suboptimal BR, 
CR, and CF profiles leading to incorrect insulin dosing may be 
the cause of undesired glycemic events, which carry dangerous 
short-term and long-term effects. Therefore, correct tuning of 
these parameters is of the utmost importance. In this work, we 
propose a new algorithm to optimize insulin dosing parameters 
in individuals with T1D who use a continuous glucose monitor 
and an insulin pump. The algorithm was tested using the 
University of Virginia/Padova T1D Simulator and led to an 
improvement in the quality of glycemic control. Future efforts 
will be devoted to test the algorithm in human clinical trials. 

I. INTRODUCTION 

In type 1 diabetes (T1D), life-long insulin replacement is 
needed to compensate for the practically absent internal 
insulin secretion deriving from the autoimmune destruction 
of pancreatic beta-cells [1]. Consequently, the quality of 
glycemic control in T1D is heavily dependent on multiple 
daily treatment decisions by the patient, to account for a wide 
variety of factors influencing insulin demand, e.g., circadian 
rhythms, physical activity, food, and stress. In this context, 
despite the improving accuracy of glucose monitoring 
devices [2],[3], the availability of modern insulin analogs [4], 
and the growing proliferation of new technologies [3],[5]-[7], 
glycemic control remains a challenge in T1D [8], with 
complication rates and excess mortality still significantly 
higher when compared to the general population [9],[10]. 

Traditionally, intensive insulin treatment implemented 
through continuous subcutaneous insulin infusion (CSII, also 
referred to as insulin pump therapy), includes basal insulin 
administered to cover the overnight and fasting periods, and 
bolus insulin given with meals to cover carbohydrate 
consumption and correct postprandial hyperglycemia, in an 
attempt to mimic insulin secretion in health [11]. However, 
insulin therapies are not as efficient as the natural 
endogenous insulin secretion, and suboptimal insulin dosing 
is still common in the management of T1D, causing 
potentially life-threatening hypoglycemic episodes [12],[13] 
and/or sustained hyperglycemia which in turn leads to the 
development and progression of long-term diabetes 
comorbidities [14],[15]. Therefore, individuals with T1D face 
a life-long optimization challenge [16]: to reduce average 
blood glucose (BG) while simultaneously avoiding 
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hypoglycemia, which has been indicated as the limiting 
factor in the management of diabetes [13]. 

To help individuals with T1D solve this problem, 
technological options are available, in the form of open-loop 
decision support systems [17],[18] or closed-loop automated 
insulin delivery (i.e., the artificial pancreas) [19],[20]. 
Especially in the former case but also in the latter, the 
optimal trade-off between glycemic control and iatrogenic 
hypoglycemia is typically achieved through periodical 
reviews of BG traces, to adjust daily profiles of basal rate 
(BR) – i.e., the amount of basal insulin delivered throughout 
the day – and carbohydrate-to-insulin ratio (CR) and 
correction factor (CF) – i.e., parameters used to dose prandial 
insulin. If a glycemic pattern is identified, optimized insulin 
dosing parameters (i.e., optimized BR, CR, and CF profiles) 
are calculated and implemented. This can be a time-
consuming and onerous task, requiring data to be 
downloaded from multiple devices and subjectively 
evaluated. In this context, innovative digital technologies 
represent a promising alternative to lessen the burden on 
health care providers and provide an objective way to analyze 
data and extract information otherwise not readily available. 

In this work, we introduce a novel method to optimize 
insulin dosing parameters in individuals with T1D who use a 
continuous glucose monitoring (CGM) system and follow 
CSII therapy. The method relies on CGM data (i.e., BG 
measurements collected and stored every five minutes), basal 
and bolus insulin records, and meal information to provide 
weekly recommendations on optimal BR, CR, and CF 
profiles to be deployed by the user. Here, we present results 
obtained by testing the optimization algorithm in an FDA-
accepted simulation environment known as the University of 
Virginia/Padova T1D Simulator [21]-[23]. The simulation 
platform includes a large, fully-identified model of glucose 
metabolism in T1D and a population of 100 virtual adult 
subjects displaying key metabolic behaviors observed in the 
general population of individuals with T1D. In simulation, 
the algorithm was successful at identifying underlying 
glycemic patterns and correcting insulin therapy, thereby 
improving the overall quality of glycemic control. 

II. MATERIALS AND METHODS 

A. Optimization of Basal Insulin Dosing 
BR is optimized weekly relying on an algorithm which 

assesses the impact of BR alone (i.e., in the absence of meals 
and boluses) on the glycemic levels. In summary, the 
method uses an individualized model of glucose metabolism 
capable of describing the glycemic response to meals and 
insulin, thus enabling to parse out the effect of BR and 
prandial disturbances on BG fluctuations. The model 
receives as inputs injected insulin (J), consumed meals (M), 
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and a residual metabolic signal needed to explain the 
experimental data (ω). Optimal BR is computed as the 
insulin input to the model, that allows to maintain the BG 
response flat at the desired target BG (here, 110 mg/dL), in 
the presence of ω while setting the meal input to zero. 

In detail, the method relies on the following three steps. 
1. Individualization of the metabolic model. The metabolic 
model used within the algorithm can be written as the 
following discrete-time, linear, time-invariant model: 

    (1) 

where k is the discrete timestamp; x is the metabolic state 
vector including plasma glucose concentration, insulin 
concentration in the subcutaneous space and in plasma, 
insulin action, and amount of carbohydrates in the stomach 
and gut; y is the model output coinciding with plasma 
glucose concentration; and A, Bins, Bmeal, Bω, and C are state-
space matrices describing the interaction between glucose 
and insulin in the presence of a meal. To reflect individual 
metabolic behaviors, the model is identified on the available 
CGM data, inputting known J and M to the model, while 
setting ω to zero. Model identification is performed using 
maximum-a-posteriori Bayesian estimation, relying on prior 
knowledge on the metabolic parameters available from the 
literature. The interested reader is referred to [24] for a more 
detailed description of the model, the meaning of the various 
parameters, and the formulation of the estimation problem. 
2. Estimation of ω. The residual metabolic signal ω is 
estimated by regularized deconvolution via inversion of the 
individualized model outlined above, to capture unmodeled 
phenomena and glucose dynamics, thereby allowing to well-
describe the experimental CGM data. The theoretical bases 
for the computation of ω are detailed in [24]. 
3. Estimation of the optimal BR. Upon estimation of ω, a 
second model inversion is performed, again by regularized 
deconvolution, to determine the optimal insulin input that 
allows to obtain a BG profile flat at around 110 mg/dL, in 
the absence of any meal input but considering ω. 

The described procedure is performed for each day, 
providing daily optimal BR traces. Then, at the end of each 
week, the median BR across days is computed to determine 
the final BR profile to be deployed over the following week. 

B. Optimization of Prandial Insulin Dosing 
In addition to BR, the algorithm provides optimal values 

of prandial dosing parameters (i.e., CR and CF), based on 
the placement of the average minimum postprandial BG 
(mPBG) via minimization of its variance while controlling 
for the amount of tolerated exposure to hypoglycemia. 

In the algorithm, mPBG is described by a linear model 
with the classical prandial predictors:  

        (2) 

where BGTGT is the target postprandial BG (here set at 110 
mg/dL); BGmeal, CHOmeal, and INSmeal are mealtime CGM 
value, meal carbohydrate amount, and meal-related insulin 

dose; and the βs are model parameters identified using 
historical data and a weighted least-square estimator with 
regularization terms on the parameters based on the subject’s 
current CR and CF values. The model is identified for each 
30-min timespan of the day (48 identifications in total), with 
weights assigned to meal events that decrease exponentially 
with the datapoint absolute age and its distance from the 
current identification timespan in terms of time of day. 

In the mPBG model of Eq. (2), INSmeal can be controlled 
through the typical prandial insulin dosing formula:  

      .    (3) 

If Eq. (3) is substituted in Eq. (2), an expression depending 
on CR and CF is obtained. Thus, the following optimization 
problem can be formulated to determine CR and CF: 

       (4) 

where STD(·) and AVG(·) are the standard deviation and 
average operators, and γ (set to 1.5) and thHypo (set to 70 
mg/dL) are aggressiveness parameters determining the 
amount of tolerated hypoglycemia. If BGmeal and CHOmeal 
are assumed to be independent random variables with finite 
variance, STD(mPBG) and AVG(mPBG) can be written as: 

 (5)  

where VAR(·) is the variance operator, AVG and VAR of 
CHOmeal and BGmeal are computed empirically using the 
same weighting schema used above, and θCHO and θBG are: 

    .  (6) 

Given Eq. (5), the minimization problem outlined in Eq. (4) 
is a quadratic problem in θCHO and θBG with constraints. The 
constraint gives a conic section that is sampled and from 
which the minimum-VAR(mPBG) point is extracted. From 
the optimal θCHO and θBG (one for each 30-min timespan), 
relying on Eq. (6) and the values of the βs obtained from the 
identification of the model in Eq. (2) in the same timespans, 
optimal CR and CF values are obtained.  

The interested reader is referred to [25] for a 
comprehensive description of the outlined method. 

C. Simulation Testing 
The optimization algorithm was tested in a 6-week 

simulation study including 100 virtual subjects with T1D. BG 
and insulin/meal records were available throughout the study.  

Three treatment arms were simulated: a) control arm 
treated with original insulin dosing parameters built in the 
simulating platform and factory-designed for each virtual 
subject (ORIG); b) control arm treated with altered insulin 
dosing parameters obtained by imposing random deviations 
with respect to the original parameter configuration (MOD); 

x(k +1) = Ax(k)+ BinsJ (k)+ Bmeal M (k)+ Bωω (k)
y(k) = Cx(k)

mPBG = BGTGT + βBG (BGmeal − BGTGT )+
+βCHOCHOmeal + βins INSmeal

INSmeal =
CHOmeal
CR

+
BGmeal − BGTGT

CF

minCR,CF STD(mPBG)

s.t.  AVG(mPBG)− γ STD(mPBG) = thHypo

STD(mPBG) = θCHO
2 VAR(CHOmeal )+θBG

2 VAR(BGmeal )

AVG(mPBG) = BGTGT +θCHOAVG(CHOmeal )+
+θBG AVG(BGmeal )

θCHO = βCHO +
β INS
CR

  and  θBG = βBG +
β INS
CF
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c) experimental arm treated with dosing parameters 
optimized at the end of each study week and deployed over 
the week following the optimization, starting from the altered 
parameter configuration defined in the previous arm (OPT). 

During each study day, each virtual subject received three 
meals: breakfast (B), lunch (L), and dinner (D). Meals time 
and amount were sampled from uniform distributions with 
the following supports: [0600-0800] and [30-50] grams of 
carbohydrates (grCHO) for B, [1200-1400] and [60-80] 
grCHO for L, and [1800-2000] and [40-60] grCHO for D.  

Metabolic and behavioral variability were included in the 
simulations to render the virtual study more realistic. 
Metabolic variability was generated by imposing daily 
patterns in insulin sensitivity, based on circadian variability 
observed in real-world data [23]. Behavioral variability was 
generated by including snacks given between meals ([15-25] 
grCHO at [0930-1030] and [1530-1630]), carbohydrate 
counting errors (up to 30% of the real amount), and bolus 
delays (up to 60 mins after the meal was consumed). 

Treatment arms for each virtual subject were identical, 
with the same meals and metabolic/behavioral variability. 

Algorithm performance was assessed using established 
metrics of glycemic variability and quality of glycemic 
control, including: average, standard deviation, and 
coefficient of variation of BG values; time spent in the target 
glycemic ranges of 70-140 and 70-180 mg/dL; time spent in 
the hypoglycemic range <54 and <70 mg/dL; and time spent 
in the hyperglycemic range >180 and >250 mg/dL. For each 
arm, these metrics were computed weekly from the BG 
traces. The comparison of week 6 to week 1 in OPT, focusing 
on time spent in 70-180 mg/dL (TIR), <70 mg/dL (TBR), and 
>180 mg/dL (TAR), was the primary analysis. All results are 
reported as mean ± standard deviation across subjects. 

III. RESULTS 

Out of the 100 subjects, 50/50 subjects had their original 
therapy modified to generate insulin over/under dosing.  

In OPT, TIR improved from 57.5% ± 21.9% in week 1 to 
80.4% ± 13.8% in week 6; TBR improved from 9.3% ± 
13.6% to 1.5% ± 3.1%; and TAR improved from 33.2% ± 
27.6% to 18.1% ± 14.1%. These results are also summarized 
in Figure 1, where the evolution of TIR, TBR, and TAR 
across the six study weeks is displayed for the three treatment 
arms. An exhaustive comparison between week 1 and week 6 
in the OPT treatment arm is presented in Table I. 

 
TABLE I.      ALGORITHM PERFORMANCE. 

 Week 1 Week 6 

BG average [mg/dL] 156.9 ± 47.4 143.4 ± 19.4 

BG standard deviation [mg/dL] 44.9 ± 15.6 38.3 ± 14.2 

BG coefficient of variation [%] 29.9 ± 10 26.1 ± 6.7 

Time in 70-140 mg/dL [%] 35.7 ± 22 55.7 ± 14.4 

Time in 70-180 mg/dL [%] 57.5 ± 21.9 80.4 ± 13.8 

Time below 54 mg/dL [%] 2.2 ± 3.5 0.2 ± 0.6 

Time below 70 mg/dL [%] 9.3 ± 13.6 1.5 ± 3.1 

Time above 180 mg/dL [%] 33.2 ± 27.6 18.1 ± 14.1 

Time above 250 mg/dL [%] 9.4 ± 15.2 2.9 ± 6.3 

 
Figure 1. Evolution of TIR (Panel A), TBR (Panel B), and TAR (Panel C) 

across the six study weeks, comparing the three treatment arms  
(ORIG: solid line and triangles; MOD: solid line and diamonds;  

OPT: dashed line and stars). 
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IV. DISCUSSION 

Insulin dosing parameters are needed to make daily 
treatment decisions in T1D. Wrong parameters are common 
due to the difficulty of extracting relevant information from 
the large amount of available data (e.g., CGM, insulin 
records, meal records). Suboptimal insulin dosing resulting 
from incorrect dosing parameters may lead to dangerous 
glycemic events, like hypoglycemia [13] – which if not 
promptly treated can lead to coma and death – and sustained 
hyperglycemia and elevated glycemic variability [14] – both 
identified as independent risk factors for the development 
and progression of long-term diabetes comorbidities. 

New technologies like the artificial pancreas and more 
general decision support systems have helped the 
management of T1D and improved the quality of glycemic 
control [17]-[20]. At the core of these technologies, optimal 
insulin dosing parameters are needed to maximize system 
performance and reduce the risk for low/high-BG episodes. 

In this work, we proposed an adaptive method to 
optimize insulin dosing parameters in individuals with T1D 
who use CGM and follow CSII therapy. The method relies 
on CGM data, insulin records, and meal information to 
provide recommendations to patients about optimal dosing 
parameters to use, based on the analysis of glycemic patterns 
extracted from previous individual data collected in the field. 
A proof-of-concept in silico study demonstrated that the 
method performs well in simulation, increasing time spent in 
the target euglycemic range, while reducing exposure to 
hypoglycemia, hyperglycemia, and glycemic variability. 

The presented algorithm has large potential if embedded 
within decision support systems to provide suggestions to 
patients upon request or on a regular schedule (e.g., weekly), 
regarding needed therapy modifications. The method can 
also be personalized to reflect individual treatment 
preferences (e.g., overnight and postprandial glycemic 
targets). Further, the method can be extended to work in the 
presence of different insulin therapies (e.g., multiple daily 
insulin injections or within an artificial pancreas). 

V. CONCLUSIONS 

This paper introduces a novel algorithm to optimize 
insulin dosing parameters in individuals with T1D using 
CGM and CSII therapy. The method was successful in 
simulation studies. Clinical testing will be performed next, 
to further validate the technology.  
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