
  

  

Abstract— Ultrasound (US) imaging is a widely used clinical 

technique that requires extensive training to use correctly. Good 

quality US images are essential for effective interpretation of the 

results, however numerous sources of error can impair quality. 

Currently, image quality assessment is performed by an 

experienced sonographer through visual inspection, however 

this is usually unachievable by inexperienced users. An 

autoencoder (AE) is a machine learning technique that has been 

shown to be effective at anomaly detection and could be used for 

fast and effective image quality assessment.  In this study, we 

explored the use of an AE to distinguish between good and poor-

quality US images (caused by artifacts and noise) by using the 

reconstruction error to train and test a random forest classifier 

(RFC) for classification. Good and poor-quality ultrasound 

images were obtained from forty-nine healthy subjects and were 

used to train an AE using two different loss functions, with one 

based on the structural similarity index measure (SSIM) and the 

other on the mean squared error (MSE). The resulting 

reconstruction errors of each image were then used to classify 

the images into two groups based on quality by training and 

testing an RFC. Using the SSIM based AE, the classifier showed 

an average accuracy of 71%±4.0% when classifying images 

based on user errors and an accuracy of 91%±1.0% when 

sorting images based on noise. The respective accuracies 

obtained from the AE using the MSE function were 76%±2.0% 

and 83%±2.0%. The results of this study demonstrate that an 

AE has the potential to differentiate good quality US images 

from those with poor quality, which could be used to help less 

experienced researchers and clinicians obtain a more objective 

measure of image quality when using US.  

I. INTRODUCTION 

Ultrasound imaging has long been used clinically to image 

tissues within the human body and recently it has been used 

in the diagnosis of musculoskeletal disorders [1]. Its 

popularity is largely due to the fact that it is able to obtain 

real-time recordings in the absence of ionizing radiation, and 

is low-cost compared to computed tomography (CT) and 

magnetic resonance imaging (MRI) [2]. Although ultrasound 

imaging has been used to diagnose different diseases, 

radiologists require a high level of experience and knowledge 

to analyze ultrasound images [3]. 

When using ultrasound, differences in tissue properties 

cause differential acoustic impedance that creates sound 

echoes and results in anatomical images. However, images 

from this modality are prone to problems such as signal 

dropout, attenuation, speckle noise, and shadows, all of which 

impair image quality. Different factors such as probe location 
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and orientation, amount of ultrasound gel applied, as well as 

force induced by the probe affect image quality [4]. Due to 

the numerous variables that can affect image quality, being 

able to acquire high quality images with minimal training and 

expertise is highly desirable. Machine learning is a technique 

that can be used to quickly classify an image based on its 

quality and the level of noise it contains. 

Machine learning can serve as a prospective clinical tool in 

medical imaging to improve diagnostic accuracy and the 

reliability of image interpretation [3,4]. These algorithms 

could allow for individuals with minimal training to be able 

to interpret an image’s quality and could complement training 

for experienced users. It has been shown that machine 

learning techniques could improve image quality assessment 

and analytics [5]. In ultrasound, implementation of machine 

learning may help with classifying and segmenting images 

based on factors such as image quality and pathologies. 

An autoencoder (AE) is a commonly used machine 

learning technique for feature extraction and classification 

that utilizes a neural network to first compress an input signal 

into a low-dimensional latent space and then reconstructs it 

based on the information from this space [6,7]. Studies [6,8] 

have shown that AEs are able to aid in denoising and image 

recovery of under-sampled ultrasound images. AEs have a 

loss function that represents the reconstruction error between 

the original and recreated image, with a common loss function 

being mean squared error (MSE), which looks at the 

differences in the square of the intensities between a target 

pixel and a reference pixel [9]. Although a convenient 

method, a per-pixel approach is ineffective as a metric for 

perceived visual quality and performs poorly when the AE 

creates an imperfect reconstruction due to factors such as 

defects or anomalies [9,10].  

An algorithm developed by the company MvTec Software 

GmbH successfully implemented a convolutional AE for 

anomaly detection utilizing a loss function based on the 

structural similarity index measure (SSIM) [9,11]. In the 

study, a database of fabric was used, and the algorithm was 

trained with normal images. During testing, both normal and 

anomalous images with defects were used to monitor the 

software’s response. Overall, it was found that images with 

anomalies had higher reconstruction errors and that using 

SSIM as the AE loss function significantly outperformed 

other architectures tested (feature matching AE, MSE based 

AE, and variational AE) when it came to detecting anomalies, 
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which was measured using area under the curve (AUC) values 

[9]. In this article, we investigated the effectiveness of an AE 

paired with a random forest classifier (RFC) for detecting low 

quality ultrasound images in order to determine its ability to 

find anomalies resulting from user errors when using the 

ultrasound probe, or from an increased level of noise.  

II. METHODS 

A. Subject Recruitment 

Subjects from our previous study [12] and from ongoing 

data collection were used in this study. Forty-nine healthy 

individuals (n = 49) demonstrating no symptoms or history 

related to neuromuscular disease participated in this study. All 

participants provided written consent prior to participating 

and the protocol was reviewed and approved by the Ethics 

Review Board of the University Heath Network (UHN) of 

Toronto. The procedure also adhered to the guidelines set out 

in the Declaration of the World Medical Association of 

Helsinki. 

B. Image Acquisition Protocol 

Images were acquired using a Sonosite X-Porte ultrasound 

system (Sonosite, Canada) at a depth of 2.3cm using a linear 

ultrasonic transducer of 15-6MHz (HFL50xp). Time gain 

compensation, depth, and window size settings were constant 

throughout each recording. During each measurement, the 

subject was seated and was instructed to rest their forearms 

on their thighs. To obtain good quality images, the transducer 

was placed over the center of the trapezius and enough gel 

was used to cover the area of skin where the transducer was 

placed. A ten second video of the trapezius muscle, recorded 

at a rate of 30 frames per second, was obtained by moving the 

transducer towards the acromioclavicular joint. Following 

each video, 300 images per subject were obtained for analysis. 

All ultrasound images were taken by an experienced 

sonographer trained in ultrasound imaging. To maintain 

consistency, the same sonographer took the measurements in 

each group and confirmed the image quality of the obtained 

images. Unique frames were extracted from each video using 

the complex wavelet structural similarity index measure 

(CW-SSIM) [13]. In order to remove redundant images, only 

frames with a CW-SSIM index of 0.5434 or less were used. 

Images were taken under two conditions to provide inputs 

with varying quality. In the user error condition, images were 

taken with no gel (No Gel), a reduced amount of gel compared 

to what is regularly used in measurement (Less Gel), and with 

increased pressure applied on the skin with the probe (Max 

Pressure). In the noise condition, Matlab (2020a) was used to 

add multiplicative speckle noise to a set of good quality 

images to create a new set of noisy images. The noisy images 

were created by changing the variance (0.01, 0.025, 0.05, 0.1) 

of the noise added using the imnoise function in Matlab. Both 

conditions included good quality images (Healthy) taken 

following standard procedure.  

C. Image Preprocessing 

Following the extraction of the unique frames, each image 

was passed through an algorithm that automatically 

segmented the US image into regions of interest (ROIs): a 

muscle ROI and a fat ROI [14]. For this study, only the muscle 

ROIs were utilized in the training of the AE and RFC. To 

create a more homogenous input for the AE, each image was 

multiplied by a binary mask created from the original image 

that underwent global thresholding using Otsu’s method [15], 

as this minimized variability in the images due to anatomical 

features unique to each participant (e.g., the distribution of 

fascia in the muscle). Following ROI extraction and 

thresholding, each muscle ROI was split into 64 x 720-pixel 

images in preparation for training of the AE, with the 

dimensions being chosen based on the most reasonable size 

output of the segmentation algorithm, while ensuring they 

remained consistent for the AE (Figure 1). Any segmented 

images that had a dimension less than 64 pixels were excluded 

as the AE required equal sized inputs, and the remainders of 

images that could not be evenly divided into 64 x 720 images 

were truncated. 

D. Autoencoder Architecture 

The images obtained were used to train a convolutional 
autoencoder for anomaly detection, which was programmed 
using Keras [16] in Python 3.8.7. The AE was trained with 
healthy, normal good quality images and the encoding layer 
architecture, which followed what was outlined in Bergman et 
al [9], can be seen in Table I. The same number of decoding 
layers are used to obtain a reconstruction of the input and they 
are built as a reversed version of the encoder in Table I. 

Table I. Autoencoder architecture 

Layer Output 

Size 

Kernel / 

Number 
of Nodes 

Stride Padding Activation 

Function 

Input  720,64,1     

Conv_1 360,32,32 4x4 2 same ReLu 
Conv_2 180,16,32 4x4 2 same ReLu 

Conv_3 180,16,32 3x3 1 same ReLu 

Conv_4 
Conv_5 

90, 8 ,64 
90, 8 ,64 

4x4 
4x4 

2 
1 

same 
same 

ReLu 
ReLu 

Conv_6  45, 4, 128 4x4 2 same ReLu 

Conv_7 45, 4, 64 3x3 1 same ReLu 

Conv_8 45, 4, 100 8x8 1 same ReLu 

“same” means that the output of the layer is the same size as the input 

To train the algorithm to better represent and decode an 

image from the latent space and to ensure that the 

reconstruction error is minimized, a loss function based on the 

SSIM was used for the AE (SSIM-AE). The SSIM is a metric 

that can be used to mitigate the limitations of pixel-wise 

comparisons, as in addition to using pixel intensity 

(luminance), it also looks at the contrast and structure of each 

pixel within a specific odd sized square kernel of the image, 

thus giving a better measure of image quality than MSE 

[9,10]. The following equations (Eq. 1 and 2) show how SSIM 

can be calculated between two patches p and q in an image:  

Figure 1: Example Image passing through the Processing Pipeline from Raw Image Acquisition to Random Forest Classifier Input  
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𝑆𝑆𝐼𝑀(𝑝, 𝑞) = 𝑙(𝑝, 𝑞)𝛼  𝑐(𝑝, 𝑞)𝛽  𝑠(𝑝, 𝑞)𝛾 (1) 

 

𝑆𝑆𝐼𝑀(𝑝, 𝑞) =
(2𝜇𝑝𝜇𝑞 + 𝐶1)(2𝜎𝑝𝜎𝑞 + 𝐶2)

(𝜇𝑝
2 + 𝜇𝑞

2 + 𝐶1)(𝜎𝑝
2 + 𝜎𝑞

2 + 𝐶2)
 (2) 

where α, β, , C1, and C2 are user determined constants, l, 

c, and s are luminance, contrast, and structure respectively, 

p, q are the means of the pixels in patches p and q 

respectively, and σp, σq are the standard deviations of patches 

p and q respectively. The default values were used for the 

constants [10]. 
The SSIM loss function used was based on the structural 

dissimilarity (DSSIM) equation (Eq. 3), which was chosen to 
determine differences between the input and reconstruction 
images and used the following formula [17]: 

𝐷𝑆𝑆𝐼𝑀(𝑋, 𝑌) = 1 − 𝑆𝑆𝐼𝑀(𝑋, 𝑌) (3) 

where X is the input image, Y is the reconstruction, and the 
SSIM function represents the SSIM between 0 and 1, where 0 
indicates the images have no similarity and 1 indicates they are 
identical. The results of this were then compared against those 
from an AE using MSE as its loss function (MSE-AE), which 
uses the following equation (Eq. 4):  

𝑀𝑆𝐸 (𝑋, 𝑌) =
1

𝑁
(𝑌 − 𝑋)2 (4) 

where Y is the output image, X is the input image, and N is 
the number of pixels in the patch being used.   

E. Autoencoder and Random Forest Classifier Testing 

The images were divided into a training set for the AE and 
a set for training and testing the RFC. The AE training set 
included 874 images that were of healthy muscle and were of 
good quality as determined by the sonographer. The AE was 
trained for 50 epochs. The set used for the RFC consisted of 

the loss maps for reconstructed images in two conditions (user 
error or noise) from the AE. The user error condition used 199 
new good quality images and 201 poor-quality images (67 
Less Gel, 67 No Gel, 67 Max Pressure). In the noise condition 
set, four levels of noise were added to the 199 Healthy images 
used in the user error condition, and these were combined with 
the Healthy images to give a set with 995 images.       
 All images passed into the AE were 64 x 720. Following 
training of the AE, a reconstructed image and map of the 
reconstruction error for each image was generated, each with 
a size of 62 x 718 (the columns and rows on the edges were 
excluded to account for the edge effects when calculating 
SSIM). Since the original images were divided into 64 x 720 
segments to be passed into the AE, following the training and 
testing of the AE the output images were grouped based on the 
original image they were obtained from (Figure 1). Following 
image reconstruction, an RFC using 100 trees was used to 
classify images in the two different conditions. Adding more 
than 100 trees had minimal impact on the results, therefore this 
number was chosen for the study.          
 The RFC for the user error condition used the mean pixel 
intensities of the reconstruction error map as a feature to 
classify between good quality images and those of poor quality 
as a result of user error. To give a better estimate of the mean 
loss, the image was divided into 8 equally sized regions and 
the mean intensity of each was used as a feature for 
classification. For the noise condition, the mean intensity and 
the entropy [18] of the images were used as features.   
 The dataset from both conditions used a 5-fold cross-
validation process. The mean classification accuracy and 
macro F1-score from the five runs were used to evaluate RFC 
performance for both conditions. Accuracy was chosen as a 
metric due to it being a good measure of performance in 
balanced test sets (i.e., the user error condition), while the F1-
score is a good predictor of AE effectiveness when there is a 
much smaller sample of one group compared to the other.  

Figure 2: A) Representative Sample of AE Outputs with User Error Conditions, B) Representative Sample of AE Outputs with Noise 

Conditions (in A and B, top panels are the input images to the AE, middle panels are the reconstructed outputs, bottom panels are 

the normalized maps of reconstruction error, with 1 representing a high reconstruction error and 0 representing no reconstruction 

error), C) Representative Confusion Matrices for User Error Conditions, D) Representative Confusion Matrices for Noise Conditions 
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III. RESULTS 

A.  Number of Images 

The resulting images remaining after the CW-SSIM and 
segmentation were 1722 images with a mean value of 37±36 
images from each participant, with a maximum of 177 and a 
minimum of 3. 874 images were used to train the AE, and the 
remaining 848 were used in the training and testing of the 
RFC. In the user error condition, 199 images were Healthy, 
244 were Max Pressure, 208 were Less Gel, and 197 were No 
Gel. To ensure a balanced training and test set for the RFC in 
the user error condition, only 67 images were used from the 
Less Gel, Max Pressure, and No Gel groups. 

For the noise condition, the same 199 Healthy images were 
used, and four noisy versions of those 199 images were 
created.  

B.  Classification Accuracy and F1-Score 

In the user error condition, the RFC trained with the outputs 
from the SSIM-AE had a mean accuracy of 71%±4.0% for the 
SSIM-AE, while the MSE-AE yielded an accuracy of 
76%±2.0%. The F1-score of the SSIM-AE and MSE-AE were 
0.72±0.03 and 0.77±0.02, respectively. Figure 2A shows 
representative samples of reconstructions from each case in the 
user error condition. Figure 2C displays confusion matrices 
from the user error conditions using both AE architectures.    
 For the noise condition, the mean accuracy was 91%±1.0% 
for the SSIM-AE and 83%±2.0% for the MSE-AE. The F1-
score was 0.84±0.03 for the SSIM-AE and 0.50±0.05 for the 
MSE-AE. Figure 2B, 2D show a representative sample of the 
input images and reconstructed images from the AEs, as well 
as representative confusion matrices from the noise condition.  

IV. DISCUSSION 

This study has illustrated the potential for using the 
reconstruction error of an AE as a metric for assessing the 
image quality of US images. Both AEs were trained using 
only normal, good quality images. Based on the 
representative examples shown in Figure 2A, 2B, it is seen 
that on average, low quality images have higher loss when 
reconstructed, which allows us to discriminate them from 
good quality images based on the mean loss and entropy.   

In the noisy condition, the SSIM-AE is more effective at 
differentiating between good quality and noisy images, as 
seen when comparing F1-scores (SSIM-AE: 0.84, MSE-AE: 
0.50) and from Figure 2D. The reconstruction error seen even 
when using noise with a variance of 0.01 is high, as seen in 
Figure 2B, suggesting that it would be possible to distinguish 
images with even higher levels of noise from good quality 
images due to the increased variability of the reconstruction. 
 When investigating the results of the user error condition, 
the accuracy of the classifier was lower (SSIM-AE: 71%, 
MSE-AE: 76%). Although these results indicate that 
evaluating image quality changes due to user error is possible, 
further investigation is necessary to reach clinical feasibility. 
The performance of the classifier in the user error condition 
may be explained by the images where the user error was that 
less gel was being used or that more pressure was being 
applied. In this study, the amount of pressure being applied, 
or gel being used, was not quantified but was determined by 
an experienced sonographer, which may result in images 
within these groups not corresponding to poor quality images.  

Based on the results, the SSIM-AE appears to be most 
sensitive to random speckle noise, as it is accurate at 
classifying images based on if they are contaminated. Both 
AEs are sensitive to noise resulting from inadequate gel use 
or pressure, however further work must be done to understand 
how well the AE can distinguish between these user errors.   

Although the classification accuracy of the two 
autoencoders was comparable, by observing the loss maps 
(Figure 2A, 2B), the SSIM-AE has the advantage of giving a 
more accurate visual depiction of where any anomaly or 
artifact is located. As outlined in previous research [9], this 
suggests that the SSIM-AE is more effective at highlighting 
disturbances in the images, compared to the MSE-AE which 
is more focused on pixel-wise differences between the input 
and output image. 

The results suggest that an SSIM-AE can be used to 
classify images based on their quality, allowing it to detect 
quality loss due to noise and user error. Further improvements 
to the AE can enable researchers and clinicians to obtain high-
quality ultrasound images without explicit training.  
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