
  

  

Abstract—Dyads are couples of collaborative humans that 

perform a task together while mechanically connected by a 

robot. As shown in different studies [1] [2], haptic interaction 

can be beneficial for motor performance so that the dyad 

outperforms the subject executing the task alone. These 

achievements are hypothesized to be the result of the haptic 

communication engaged between the subjects that triggers 

internal forward models. In this way the dyad’s components 

can attain additional information about the task, hence 

improving their performance. Here we show a novel dual 

robotic system, called Pantograph, used in a pilot study to 

understand the influence that the nature of the partner has on 

the learning process. The main hypothesis that we claim is that 

a Novice-Novice type of interaction is more beneficial, in terms 

of speed of learning, with respect to an Expert-Novice type of 

interaction. The results show time constants equal to 5.53 ± 

2.79 and 8.45 ± 3.78 for the Novice-Novice and Expert-Novice 

group, respectively. However, the p-value obtained was p = 

7.54%. Hence, we can not generalize our results, but this 

research study shows how haptic communication between 

interacting humans allows for motor learning and how the 

nature of the subjects could be an important factor of the 

learning process.  

I. INTRODUCTION 

Little is known on humans interacting and learning 
together, and yet interaction with other subjects and learning 
is common in everyday life. The study of dyads, a couple of 
interacting humans, has been of large interest over the years. 
These processes can lead to different types of responses that 
can also affect the motor behavior of the subjects. These 
responses can be the result of two types of signals: 

• Cognitive signals, that is the recognition of the individual      
with which an interaction is occurring.  

• Sensory feedback, such as visual, haptic and auditory 
signals. 

This study mainly focuses on the second type of 
feedback, particularly on haptic signals that are exchanged 
between two subjects coupled with a passive dual robotic 
system called Pantograph. A lot of studies have been done on 
human-human interaction and more of them are focusing on 
dual robotic systems. Some of these have the aim of studying 
the human-human interaction principles to use them in the 
design of control systems of robots [3] [4] [5] that are used, 
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for example, in the rehabilitation process in which is 
important to obtain an interaction, between the robot and the 
user, that allows variability of movements and that is 
intuitive and natural [6]. So, even if motor learning has been 
largely studied through different methods, in a lot of fields 
(particularly in rehabilitation) there is need for more effective 
motor learning technologies. Exploiting the precision and 
speed of a robot with the intelligence of a human could 
provide those results that individual tasks have not been able 
to give.   

However, how our motor behavior is influenced by 
another interacting subject is still largely unknown. Thus, our 
study wants to be a first step for future research in which the 
type of paradigm we evaluated will be studied and used in 
different fields such as rehabilitation, sports and surgeon 
training. Our investigation will mainly focus on a preliminary 
experiment done on healthy dyads, connected through the 
Pantograph, that were asked to perform collaboratively a 
target tracking task with a visuomotor rotation of 80°. We 
defined two different groups: the Novice-Novice group, 
where both participants do not have any a priori information 
about the task, and the Expert-Novice group, in which one of 
the components has been exposed to the task beforehand. 
Our hypothesis is that a Novice-Novice type of interaction is 
more beneficial, in terms of speed of learning, than an 
Expert-Novice type of interaction. 

II. RELATED STUDIES 

A.  Human-Human Interaction Taxonomy 

When talking about physical human-human interaction, 
one of the first elements that has been defined is how the 
subjects deal with each other. This taxonomy allows to 
understand the mechanisms that are present in these 
interactions, hence permitting a better understanding of the 
agents’ behavior. The classification presented here has been 
defined by Jarrassé [7] and it is based on minimizing effort 
and error of each individual and on role assignment: 

• Competition: in this type of interaction every 
component minimizes its own error and effort without 
considering the ones of the partner (or partners). This type of 
interaction generally occurs in antagonist tasks.  

• Collaborative: in this case each component also 
considers the error and effort of the other components so that 
the task is completed in a way that benefits each component. 
In this case, there is not any role assignment prior to the 
beginning of the task. So, roles are defined during the 
execution of the task and there is an equal distribution of 
effort between the participants [3]. 
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• Cooperative: as in the collaborative case the subjects 
work together to minimize effort and error but in this case the 
roles of each subject are defined before the beginning of the 
task and do not change during the execution of the task. In 
this case there is an uneven distribution of effort since, even 
if every participant is working to reach the same goal, each 
component is performing a different part of the same task. 
This type of interaction can be divided in other two subtypes: 
assistance, where the effort and error that are being 
minimized are the one of the person that is receiving 
assistance (in human-human interaction paradigms the haptic 
signals exchanged between the subjects can be used as a 
measure to understand the assistance that the other subject 
needs), and education, where there is a teacher-student role 
assignment where the teacher tries to minimize the error of 
the student so that they can then perform the task alone (this 
type of interaction represents more the therapist-patient 
interaction). 

B.  Cooperative Dyads 

The research study by Patton and Reed [2] has the aim of 
understating how human-human physical interaction occurs 
and if two motor control systems are better than one. They 
developed a crank that connected two different individuals 
through two spinning handles. The task that the individuals 
were asked to perform was to move the handle to the target 
that was displayed on the screen and to hold the handle until 
a new target would appear. This task was done by dyads and 
by individuals alone. What they measured is the completion 
time of the task and what they found is that, except for two 
cases, the completion times for dyads were lower than the 
ones found for the solo tasks. This means that human-human 
interaction is indeed beneficial to motor performance and 
since the only way for the two subjects to communicate was 
through the device (during the task they could not see or talk 
to each other), this supports the hypothesis for which the 
haptic communication that was engaged between the 
participants allowed them to attain more information about 
the task, hence improving the performance. The force 
profiles that were recorded showed how dyads develop a new 
cooperative strategy to complete the task [2] [8].  

Even if the presence of another interacting human can be 
felt as hindering the motor performance, a lot of other studies 
showed how this interaction is instead beneficial. Not only 
the cooperation brings to an enhancement of performance, 
but at the same time it minimizes the effort of the dyad’s 
components [9] [10].  

However, the combination of different types of 
information is not always more effective than a single 
information channel. Indeed this is dependent on the task 
[11] [12], the type of information provided [13], and on how 
the two people in the dyad perceive each other [14] [15]. 

C.  Dual robotic systems and dyadic tasks 

One of the main research studies that has been done on 
dyads, and with which we compare our results, is the one 
made by Ganesh [1]. This work has the aim of investigating 
motor responses that are given by the sensory feedback 
through haptic signals when human-human interaction 
occurs. To quantitatively study the haptic signals’ effect on 
dyads movement, a cyber human system was developed so 

that there was a connection between the individuals through a 
virtual elastic band which compliance could be changed. 
Hence, the compliance could be set to 0 so that each 
component of the dyad could perform the task individually. 
The task that was required to be performed was to track a 
target with a cursor controlled with the dual robotic system 
with a visuomotor rotation of 80°. This task was performed 
both by dyads and by individuals alone. 

This study shows that the human-human interaction 
improves motor performance. Moreover, the benefits were 
higher than the ones registered when the task was performed 
individually. This means that the haptic communication 
between the two subjects allowed the participants to improve 
the performance. Another important result that has been 
obtained by [1] (and [16]) demonstrates how actual robotic 
designs can not replace humans. A trajectory and force 
playback experiments were performed: the interaction was 
between a human and a robot, the latter’s response was 
predefined and it emulated the one of a human that 
previously performed the task. These experiments exhibited a 
degradation of the performance of the dyad. What arose is 
that in this type of experiment there is a one-way connection, 
which means that the subject could feel and respond to the 
action performed by the virtual partner, but the latter could 
not change its response based on the one of the other 
component of the dyad. Hence, the user did not receive any 
haptic feedback. So, a two-way connection seems to be an 
essential factor that induces mutual motor benefits. This 
suggests that humans, during physical interactions, have 
implicit expectations in terms of the haptic forces from a 
partner and this allows to gain more information on how to 
complete the task in a more efficient way [17].  

Finally, the influence of the nature of the subjects was 
studied and what was revealed is that it influences the 
outcome: more gains in terms of motor performance has been 
measured when the two subjects were similar to each other 
(which is in the case of the Novice-Novice experiment).  

Even if these results are very promising, the complexity 
of the device that has been used by [1] may drive away the 
attention from human-human interaction benefits: are these 
results a consequence of the dyadic interaction or part of 
these motor improvements have been given by the device’s 
features? For this reason, we decided to develop a much 
simpler device, with respect to the one used in Ganesh’s 
study, that is fully controlled by two interacting subjects and 
not influenced by other aspects. The task performed with the 
Pantograph will be the same used in [1] so that the results 
can be then compared between the two research studies.  

III. DESIGN AND DEVELOPMENT OF THE PANTOGRAPH 

A.  Mechanical Structure  

The Pantograph is a mechanical system that presents two 
handles that are placed at the extremities of the device and 
are mechanically connected through six steel-tubes linked 
one another with seven steel-pins. There are four tubes (three 
for each handle) that are long 25.5cm and two center tubes 
that are long 51cm. The last two tubes are connected to each 
other by a common central pin which can be considered the 
center of rotation of the whole Pantograph, the shorter six 
tubes, instead, are connected to each other using three 
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different pins: one is connected to the handle (and it is used 
also as a support of the handle), while the other two link the 
tubes to the central ones. All these pins are conceived not 
only to connect the different structures of the system to each 
other but also as the joints that allow the movement of the 
whole and the relative movement between two different 
links. The connection between the subjects is purely 
mechanical, this avoids the use of local area networks that 
bring delays that cause the quality of the haptic interaction to 
degrade [18]. Hence, a direct mechanical connection is 
optimal.  

To read the position of the handles, two incremental 
optical encoders are connected to the Pantograph. One of 
them is linked to the lower central tube and it is blocked on 
the base on which the pantograph lays. The other one is 
instead connected to the upper tube and it is kept in place 
through a bridge made of 80/20 aluminum bars on which the 
support base of the encoder is attached. This avoids the 
translation of the encoders while the system is in use, hence 
providing a proper measurement of the angle of rotation. 

 

 

Figure 1 SolidWorks mockup of the pantograph. In this structure the 

six-steel tubes mechanism, that allows for high compliance between the 

users, can be seen clearly. The gray boxes represent the structures in 

which the encoders are inserted and at the extremities of the device the 

spherical wooden handles are fixed to the device through pins. 

B. Data Acquisition System 

The data acquisition is made by an Arduino that reads 

the encoders’ signals at an average sampling rate of 50Hz. 

The incremental optical encoders provide a digital signal 

that counts how many times the rotational axis rotates. This 

signal is then sent to Matlab through serial communication 

and from Matlab the angle of rotation of the central tubes is 

computed.  

Using the angles that are given by the encoders it is then 

possible to solve the following forward kinematic equations 

to obtain the position of the cursor:  

 

Xc = 2 a cosd(θ2)sind(θ1+ θ2)                    (1)       

 

Yc = 2 a cosd(θ2)cosd(θ1+ θ2)                    (2) 

 
Where Xc and Yc are the position of the handle in the 2D 

space, a is the length of the shorter tube and it is equal to 
25.5cm, θ1 is the angle between the lower central pipe and 
the x-axis and it is computed by multiplying the resolution of 
the encoder (0.15°) by the digital signal of the lower encoder 
and θ2 is half of the angle between the central tubes and it is 
computed as half of the difference between the digital signals 

of the two encoders multiplied by the encoder’s resolution 
(0.15°). 

IV. METHOD 

A. Participants 

Twenty participants (10 men, 10 women, all right-

handed), age 19-61 (18 of them are younger than 30), from 

Shirley Ryan Ability Lab participated after giving informed 

consent. All the experimental procedures presented in this 

paper and that involve human subjects were approved by the 

Institutional Review Board of Northwestern University.  

B. Experimental Protocol and Task  

The experimental protocol has been taken from [1]. This 

will allow to compare the results and the different devices 

used in the two research studies. 

Participants were randomly assigned to the Novice-

Novice or to the Expert-Novice group. From the Expert-

Novice group 5 “Experts” were chosen and they performed 

a training of 10 trials that allowed them to gain knowledge 

about the task. Also, the composition of the dyads was 

random within the same group.  

The dyads were asked to perform cooperatively a 

tracking target task in a visuomotor rotation environment of 

80° (in a clockwise direction) for 60 different trials of 60 

seconds each. “After each trial the target will be switched 

off and their hand will be passively returned to the center of 

the screen followed by a 20-30 seconds break” (G. Ganesh, 

A. Takagi, 2014) [1]. 

 A screen mounted on the Pantograph displayed a cursor, 

that was controlled through the dyadic interaction, and a 

target. The participants were asked to follow the target 

trying to minimize as much as possible the distance between 

the cursor and the target. The latter moved according to the 

following multi-sine functions:  

 
xT = 3sin (1.8t) + 3.4sin (1.8t) + 2.5sin (1.8t) + 4.3sin (2.3t)  (3)   

 
yT = 3sin (1.1t) + 3.2sin (3.6t) + 3.8sin (2.5t) + 4.8sin (1.48t)  (4) 

 
Where xT and yT are the target position in the 2D space 

while t is the time vector defined as:  

t = [ti, ti + 60] and 0 <ti< 20                (5) 

ti is chosen randomly for every trial, in this way the 
target’s path is never the same. 
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Figure 2 The screen mounted on the top of the device covers the limbs 

of the subjects so that they are not able to see them while executing the 

task. On the screen the virtual environment is displayed and the 

participants are able to see the target (in red) and cursor movements 

(in blue). The cursor position can be then controlled by moving the 

wooden spherical handles.       
    
 

 

Figure 3 Example of a target trajectory during 60 seconds of trial. The 

hand movements of the subjects had to cover a workspace of 30cm. 

This is just one of the possible target’s trajectory since it changes 

between different trials.  

 

The 60 trials are then divided in three main phases: the 
familiarization phase (for the first 10 trials), the visuomotor 
rotation phase (from trial 11 to trial 50) and a washout phase 
(for the last 10 trials, in this phase the visuomotor rotation is 
turned off as in the familiarization phase).  

The participants were not allowed to see their own hands, 
that were covered by the screen mounted on the device, so 
that they could not develop any strategy different from the 
one that arises from the dyadic interaction. Moreover, they 
were not allowed to talk to each other. To avoid the risk that 
one of the components of the dyad would execute the 
movement passively, they were told that they had to 
complete the task as they were performing the task alone. 
This allowed to have data related to true human-human 
interaction, and not to a human passively following the 
movement of the other subject’s limb. 

V. RESULTS 

The performance in each trial was described by the mean 

distance between target and cursor throughout a single trial. 

From this data a decaying exponential fitting learning curve 

was computed as:  

 

f = p1 + p2e
(-x/τ)

                             (6) 

 

Where p1 is the initial offset, p2 it he magnitude of the 

shift and τ is the time constant that represents the speed of 

learning.  

Out of 10 groups, 9 showed to be able to learn to deal 

with the visuomotor rotation and with the cooperative 

interaction. However, one group did not show any learning. 

In this case, since a decaying exponential fitting curve can 

not be computed, the time constant for this group was set to 

40 trials (which is the maximum number of trials in the 

visuomotor rotation phase).  

 

 

 
Figure 4 (A) The cursor, controlled by the dyadic interaction, does not 

follow properly the target path in one of the first trials with the 

visuomotor rotation. Indeed, the dyad showed a poor performance 

(error = 7.6 ± 2 cm) with respect to the subsequent trials. (B) In this 

case the cursor trajectory gets closer to the target path. The mean 

distance between target and cursor in this trial is equal to 3.4 ± 0.62 

cm. Hence, the dyad showed a better performance with respect to the 

previous trials.  

 

The average time constant for the Novice-Novice group 

was τ = 5.53 ± 2.79, while the one for the Expert-Novice 

group was τ = 8.45 ± 3.78. The latter average speed of 

learning has been computed without considering the outlier. 

B 

A 
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This happens also in the familiarization phase in which the 

Novice-Novice group showed an average time constant        

τ = 2.4 ± 3.17, while the Expert-Novice group had a time 

constant τ = 6.7 ± 3.33. Instead, in the washout phase the 

trend is inverted and the Expert-Novice group learns faster 

with a time constant τ = 2.6 ± 3.58, while the Novice-

Novice group’s time constant was τ = 4.9 ± 3.09. 

The amount of learning in the visuomotor rotation phase 

for the Novice-Novice group is equal to 4.71 ± 2.99 cm, 

instead for the Expert-Novice group it is equal to 4.29 ± 

1.69 cm.  

 

 

 

 

 

 
Figure 5 Exponential fitting curves for Novice-Novice (in blue) and 

Expert-Novice (in red). On the background the real data for each 

group is plotted. The Novice-Novice exponential curve, decays faster 

than the Expert-Novice one in every phase except for the washout 

phase. This means that in the familiarization and in the visuomotor 

rotation phase, the Novice-Novice group learns faster. 

 

Due to the small sample size and the non-normal 

distribution of the data, a t-test or a two-way ANOVA test 

could not be performed. Hence, a Wilcoxon rank sum test 

was used on the time constants to examine if the difference 

between the two groups is significant. Five time constants 

were associated to the Novice-Novice group, while the other 

five to the Expert-Novice group. The test gave a statistic = 

20 and a p-value p = 7.5% which indicates that there is not a 

significant difference between the two groups in terms of 

speed of learning. 

 

 
Figure 6 The boxplot shows how the median value (red line) of the time 

constant for the Novice-Novice group is lower than the one of the 

Expert-Novice group. Moreover, the Expert-Novice group presents an 

outlier. 

VI.  DISCUSSION 

So, as shown by the results, a very simple device, as the 

one we developed, can lead to motor learning by 

interchanging haptics signals between two subjects. This 

might be another study that supports the theory for which 

these haptic signals, trigger internal forward models (as 

shown in other studies [1][2]) that may benefit motor 

learning. What is particularly interesting is that, even if the 

device does not possess complex features (such as a 

controller, motors or the ability of changing the compliance 

between the two handles), motor learning still occurs. So 

just by exploiting human-human interaction we could define 

a paradigm that triggers the learning process. Also, the same 

results were obtained by [1] with a much more sophisticated 

device. This explains how in this type of paradigms the key 

factor might be the interaction signals between the dyad’s 

components and how the robot features are less significant. 

As we hypothesized it is possible to see a difference in 

the learning speed between the two groups and we can also 

see how the Novice-Novice group learns faster than the 

Expert-Novice group. Hence, when the nature of the 

partners is similar there is an enhancement of the learning 

process. So, when the implicit expectations of the haptic 

forces are comparable between the two partners, additional 

information about the task is retrieved not only with respect 

to solo tasks [1] [17] but also with respect to the Expert-

Novice group. 

 This is true in the two first phases, but in the washout 

phase the trend is switched. This means that the Expert-

Novice group re-learn how to move without visuomotor 

rotation faster than the Novice-Novice group. The reason 

behind this can be found in the role of the Expert, indeed 

their knowledge about the task could have given the dyad 

information on how and when to “recover” from the visual 

distortion.  

However, as the statistical test proves, we can not 

generalize our results. This is probably because the sample 

size is too small to demonstrate our hypothesis. But these 

results are promising and more research should be done 

about it.   

In the sample we collected we found one outlier in which 

one dyad did not show any learning. This might be due to 

different reasons but the most likely is the lack of attention 

and of active movements by one of the two subjects during 

the execution of the task. Indeed, attention is a main 

component in motor learning [19].  

This study can be seen as a first step towards a deeper 

understanding of how human-human interaction works and 

can be deployed in actual applications. 

VII. LIMITATIONS AND FUTURE WORK 

The main limit of this research study is the small sample 

size that did not allow us to demonstrate the results we 

presented. So, further studies should be done on this device 

to understand more consistently if the motor learning 

benefits that have been found can be generalized.  
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Even if with the simplicity of our novel device we were 

able to see motor learning, we still do not know much about 

how human-human interaction happens. For this reason, it 

will be important to embed our device with more sensors. 

Particularly, strain gauges could be added to the center 

beams to measure the forces applied on them and 

subsequently to compute the forces applied to the handles. 

This would bring extra information on how the haptic 

signals are interchanged and which cooperative strategies 

are developed between the dyads’ components. 

Our aim is to continue this study by improving the 

device first and by using it in experiments that allow to 

collect more data and more information on how human-

human interaction occurs and can be deployed.  
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