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ABSTRACT
Among males, prostate cancer (Pca) is the cancer type with the
highest prevalence and the second leading cause of cancer deaths.
The current screening methods for prostate cancer lack effective-
ness such as prostate-specific antigen (PSA) and digital rectal exam
(DRE). Machine learning models have been used to predict Pca pro-
gression, Gleason score, and laterality. In this research paper, we
have employed novel Machine learning techniques such as Bayesian
approach, Support vector machines (SVM), Decision Trees, Logistic
Regression, K-Nearest Neighbors, Random Forest and AdaBoost for
detecting malignant prostate cancers from benign ones. Moreover,
different feature extracting strategies are proposed to improve the
detection performance and identify potential genomic biomarkers.
The results show the Lasso feature set yielded high performance
from the models with SVM achieving exemplary classification ac-
curacy of 97%. The Lasso and SVM combination reported many
significant biomarker genes and gene mutations including but not
restricted to CA2320112, CA2328529, and CA2436168.
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1 INTRODUCTION
Prostate cancer (Pca) is one of themost common forms of cancer and
the third leading cause of cancer death in North America [10, 27].

The prediction of the pathologic stage of PCa before an intervention
enables improved patient prognosis and management for treatment
planning [7]. Discovery of new diagnostic biomarkers for effective
prostate cancer detection and management strategies for prostate
cancer is therefore highly sought after. Traditional methods for de-
tecting prostate cancer such as prostate specific antigen (PSA) blood
test, trans-rectal ultrasound image (TRUS) guided biopsy, and digital
rectal exam (DRE) have inherent limitations. PSA blood test statisti-
cal results shows a specificity of 61% and a low sensitivity of 34.9%
[9]. The recent advance in artificial intelligence (AI) and computa-
tional capabilities have facilitated robust pattern recognitions from
diverse sources of information including large heterogenous data
sets, images and genomic data. Although the application of AI in
medicine remains in its early stages, some studies have introduced
different prediction models for advanced PCa using conventional
machine learning [7]. Presently there is growing interest in medical
research in investigating genomic alterations in patients diagnosed
with benign and malignant tumors to identify measurable changes
distinguishing the two patient groups, and application of ML to
genomics data to accurately distinguish the two patient groups.
This study aims to: (a) Apply feature selection methods to decrease
the dimensions of the gene expression data to (b) identify a small
set of predictors or potential genomic biomarkers to distinguish
the histological subtypes. (c) Apply machine learning algorithms
to construct computational models that differentiate between ma-
lignant and benign tumor types (d) Evaluate the performance of
the machine learning models on the significantly expressed genes.
This paper is organized as follows. Section 2 presents a review of
literature on applications of ML and simple DL models for prostate
cancer prediction-based on genomic data, and Section 3 provides
descriptions of the data preparation methods, feature selection and
classifier techniques used to develop the predictive models. In Sec-
tion 4, the results of the experiment are discussed in details followed
by the concluding remarks in Section 5.

2 RELATEDWORK
Critical aspects of the biology and molecular basis for prostate
malignancy remain poorly understood. To reveal fundamental dif-
ferences between benign and malignant growth of prostate cells,
gene expression profiling of prostate cancer using cDNA microar-
rays consisting of 6500 human genes revealed for the first time that
significant and widespread differences in gene expression patterns
exist between benign and malignant growth of the prostate gland
[17]. [21] performed a comprehensive gene expression analysis
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Figure 1: Workflow of Model

on samples including prostate cancer tissues, prostate tissues ad-
jacent to tumor and found that gene expression patterns can be
used to predict the aggressiveness of prostate cancer [28]. Previ-
ous studies on the 11-tumor database have shown that machine
learning consistently performs well in multi-cancer type scenarios
and demonstrated that Logistic Regression achieves efficient and
accurate tumor classification based on gene expression (microar-
ray) data with accuracy of 90.6% [25] In their paper, [1] present and
validates various classification techniques on supervised machine
learning (ML) for predicting prostate cancer. A modified Logis-
tic Regression (LR) classifier was proposed based on both clinical
and tumor stage characteristic showed improvement in accuracy

and positive prediction value (PPV) as compared to existing clas-
sifiers. Machine learning models were recently utilized to predict
the outcomes of Pca, and to find potential biomarkers for the clin-
ical features of the disease. In their review of machine learning
methods, [2] reported high performance of the genomic data-based
models with an accuracy of more than 90%, and identification of
many biomarkers genes and genes transcripts including but not
restricted to CARNA22 in prediction of including Pca progression,
Gleason score, and laterality. A method that uses machine learn-
ing techniques to identify transcripts that correlate with prostate
cancer development and progression was applied by [14]. They
isolated transcripts that have the potential to serve as prognostic
indicators and may have tremendous value in guiding treatment
decisions. Analysis of normal versus malignant prostate cancer data
sets indicates differential expression of the genes HEATR5B and
DDC [3]

3 METHODS
3.1 Data Preparation
The dataset for the study was accessed from the Gene Expression
Omnibus database. The dataset of GSE94767 consists of 236 samples
from fresh frozen tissue from the prostatectomies of 154 prostate
cancer (Pca) patients. 185 samples were malignant tissue and 51
samples morphologically benign tissue. Gene-level signal estimates
were derived from CEL files generated from Affymetrix GeneChip
Exon 1.0 ST arrays using the robust multiarray analysis algorithm8
implemented in the Affymetrix Expression Console software pack-
age [16]. The dataset was pre-processed to remove the insufficient
fibroblast samples and the few instances of null data imputed with
the feature mean values. We separated the cohort of 236 samples
into two different sets, the training set with 142 samples for training
and validation, and the test set with 95 samples where the training/
test ratio was 60%, 40%.

3.2 Feature Extraction
The goal of supervised feature selection is to find a subset of input
features that are responsible for predicting output values. The large
number of features increases the computational costs and leads to
the problem of curse of dimensionality [8, 22]. For this project we
used four feature selection methods to avoid the curse and enhance
the generalization ability of the model [20, 21]. The features selec-
tion methods implemented are, specifically, the fisher-score metric,
Extra-Tree classifier, Hilbert Schmidt Independence Criterion Lasso
(HSIC) and Lasso regularization. Fisher-score methods are feature
selection methods based on similarity that assess feature impor-
tance in terms of the ability to preserve data similarity. The Lasso
methods are based on sparse learning and employ regularization
terms to reduce the weights of unimportant features in the model
[11]. The HSIC is a nonlinear feature selection method considering
the nonlinear input and output relationship. HSIC Lasso employs
the HSIC to measure dependency between variables [5]. The Extra
Trees Forest ensemble method which is a decision tree based fea-
ture selector using the Gini index criteria. [18] A feature selection
repository of Python named “scikit feature” was used to implement
the fisher-score method. This feature selection models reduced the
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Table 1: Accuracy of Models on Feature Sets Including Baseline

Accuracy (%)
Type Lasso Fisher-Score Extra-Tree HSIC All Features
Naive Bayes 85.3 76.8 75.8 81.1 71.6
Logistic Reg. 95.8 77.9 80.0 83.2 72.6
KNN 83.2 77.9 82.1 83.2 72.6
CART 76.8 78.9 80.0 75.8 72.6
SVM 96.8 77.9 80.0 83.2 74.7
RF 85.3 80.0 84.2 80.0 78.9
AdaBoost 88.4 72.6 83.2 86.3 73.7

Table 2: Classification Performance of Models on Lasso Feature Set

Type Precision Recall Specificity F1 AUC
Naive Bayes 0.87 0.85 0.61 0.86 0.92
Logistic Reg. 0.96 0.96 0.86 0.96 0.99
KNN 0.82 0.83 0.70 0.81 0.81
CART 0.78 0.77 0.24 0.77 0.52
SVM 0.97 0.97 0.90 0.97 0.99
RF 0.86 0.85 0.87 0.83 0.85
AdaBoost 0.88 0.88 0.85 0.87 0.88

number of genes from approximately 22,000 to four different sets
with 50 genes.

3.3 Classifiers
Multiple classification methods were applied on the data to identify
which methods separate the locations better. NB is based on Bayes’s
rule of conditional probability. It uses all attributes and allows them
to make contributions to the decision as if they were all equally
important and independent of one another, with the probability
denoted by (1).

𝑃 (𝐻 |𝐸) =
∏𝑛

𝑖=1 𝑃 (𝐸𝑖 |𝐻 ) × 𝑃 (𝐻 )
𝑃 (𝐸) (1)

where 𝑃 (𝐻 ) denotes the probability of event𝐻 , 𝑃 (𝐻 |𝐸) denotes the
probability of event 𝐻 with the condition of occuring event 𝐸, 𝑛 is
the 𝑛𝑡ℎ attribute of the instance, 𝐻 is the outcome in question, and
𝐸 is the combination of all the attribute values [23]. SVM maps the
input into a high-dimensional feature space and finds a separating
hyperplane that maximizes the margin between two classes in this
space [13]. The solution of the optimal hyperplane can be writ-
ten as a combination of a few input points that are called support
vectors [12]. Logistic Regression (LR) forms a predictor variable
that is a linear combination of the feature variables. The values of
this predictor variable are then transformed into probabilities by a
logistic function. This method is widely used for 2-class prediction
in biostatistics. [6] K-Nearest Neighbors (KNN) is another classifi-
cation technique that works on the idea of assigning the label of
a classified data point to an unclassified data point nearest to it.
Starting with the unclassified class data point as the input vector
in the feature space, it is assigned to the class in which majority
of its K nearest data points belong to [12] Decision trees (with the

CART algorithm) interpolates learned knowledge from a dataset
into a tree which is governed by if-then rules . Each node in the
tree represents the learning variable which recursively checks how
accurately can each node classify the labeled data, by calculating
the information gain and entropy of each node. This learning pro-
cess leads to selecting the best node as the parent node and the
children nodes carry the possible values of the selected input data
[6]. Random forest (RF) is an ensemble learning approach, where
many decision trees are generated during the training stage, with
each tree based on a different subset of features and trained on a
different part of the same training set. During the classification of
unseen examples, the predictions of the individually trained trees
are then agglomerated using the majority vote. This bootstrapping
procedure is found to efficiently reduce the high variance that an in-
dividual decision tree is likely to suffer from [4, 14]. The RF operates
by constructing a multitude of decision trees on various subsamples
of the dataset and results in a mean prediction of decision trees to
improve accuracy and avoid over-fitting [19]. AdaBoost uses the
complete training dataset to train the weak learners, where the
training examples are reweighted in each iteration to build a strong
classifier that learns from the mistakes of the previous weak learn-
ers in the ensemble [24]. In order to evaluate the model, certain
metrics are used, such as accuracy which calculates the ratio of cor-
rectly classified samples against the total number of samples. Two
other metrics used are sensitivity and specificity, where sensitivity
indicates, how well the test predicts one category and specificity
measures how well the test predicts the other category. Another
important metric is the AUC (Area Under The Curve), where the
curve is the ROC (Receiver Operating Characteristics) curve. It is
a graph that shows the performance of a classification model by
plotting the True Positive Rate (TPR) against the False Positive Rate
(FPR).
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Figure 2: Comparison of Model Accuracy on Different Fea-
ture Sets

Figure 3: Area Under ROC Curves of Models on Lasso Pre-
dictors

3.4 Performance Evaluation
The analysis uses the sensitivity, specificity and precision as perfor-
mance metrics to measure the efficacy of the models. The analysis
is experimented across all classes of the positive and negative ex-
amples to obtain a more balanced assessment of the true positive
and true negative predictions. The primary performance metrics
are the area under Receiver Operator Characteristic curve (AUC),
accuracy and F1 score. Given that the dataset is unbalanced, the
focus is on the AUC and F1 score.

4 RESULTS & DISCUSSION
The four feature selection methods consisting of Fisher-score, HSIC
methods, Extra-tree classifier and Lasso model were each used sep-
arately to analyze the dataset and identify the fifty most significant

features based on the selection criteria. The extracted feature sepa-
rate sets (each consisting of 50 features or genomic profiles) were
then used as input to evaluate how well the supervision-based ma-
chine learning models predict the benign/malignant groups. The
results of the performance accuracy of the models based on the
separate feature sets is presented in Table 1. The performance of
the various classification algorithms with all features is provided as
a benchmark. The accuracy results show all the models performing
with similar accuracy of average 75% based on all features. This
average score indicates good predictive performance on all features
which is better than a random guess (50%). Noticeably, the models
achieved marginal improvement or decrement in the scores on the
fisher-score selected feature set compared to the baseline with the
lowest scoring ADA model recording an increase of 1% points to
72.6% and the RF and BAG increasing their scores by 1% to 80%.
The decision tree classifier (CART) achieved the best improvement
in performance with a 6% increase to 78.9%. Majority of the models
produced accuracy scores of >= 80% on the feature set selected
with the Extra-tree method. The least performing on the dataset
was the Naïve Bayes classifier that scored 75.8% accuracy and the
best results were observed for the Random Forest classifier with
accuracy of 84.2%. The highest accuracy score on the HSIC selected
feature set was 86.3% produced by the ADA classifier and the three
classifiers SVM, CART and LR yielded the same accuracy score of
83.2%. The best results from the reduced datasets was produced
from the Lasso selected features with the top performers achieving
>10% improvement in accuracy over the scores recorded in the next
best feature (HSIC) set. The best performer was observed to be
the SVM classifier which achieved very high accuracy of 96.8% on
the Lasso dataset and which represented a > 20% improvement on
its baseline score. Following closely with similar robust prediction
capability was the Logistic Regression estimator that produced an
accuracy of 95.8% which was also 20% greater than the baseline.
The other classifiers were observed to yield very good performance
on the dataset with the ADABoost, RF, NB, and KNN scoring accu-
racies of 88.4%, 85.3%, 85.3% and 83.2% respectively. The decision
tree (CART) classifier was the least performing on the dataset with
accuracy of 76.8%. The comparison of the accuracy scores is illus-
trated in Figure 2. The robust performance of the SVM and LR
classifiers on the Lasso dataset were demonstrated on their accu-
rate predictions of the positive and negative classes with the SVM
yielding precision, sensitivity and F1 values of 0.97 and exemplary
AUC scores of 0.99 as shown in Table 2). The LR similarly scored
0.96 on precision, recall and F1 and achieved AUC of 0.99. The
performance scores on the evaluation metrics of precision, recall
and specificity are found on Table 2 and the area under ROC curves
are illustrated in Figure 3. The Lasso method was found to have
produced the most significant features due to the capability of the
selected features or biomarker genes to produce robust accurate
prediction on data. The heatmap of Figure 5 shows that the selected
features have low correlation between the members. The 50 canon-
ical alleles identified by the Lasso feature selection method, includ-
ing CA2320112, CA2328529, CA2436168, CA2841386, CA2844385,
CA2946225, CA3265175, CA3275386, 3275392, CA3275524, CA3551874,
CA3556723, CA3819651, CA3819695, CA3823379, and CA3980930
were observed to demonstrate a significant associationwithwhether
a prostate cancer tumor was malignant or benign and are potential
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Figure 4: Heatmap Showing Correlation between Gene Variants of Lasso Set

Figure 5: Clustermap of Gene Variants Indicating Target Group of Samples

informative targets for the treatment considerations and diagnosis.
The cluster map of the gene and gene mutations is presented in
Figure 5.

4.1 Discussion
The fisher-score metric produced predictors that resulted in the
classifier models scoring average accuracy of 77% (with RF and
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AdaBoost scoring the highest and lowest precision on the predic-
tors at 80% and 72.6% respectively) which was marginally better
than the baselines. There was an improvement in accuracy on the
Extra-Tree predictor set with the RF and AdaBoost models now
observed to obtain a high score of 84.2% and 83.2% respectively and
the NB trailing in precision in the group with 75.8% accuracy. All
models scored >80% on the HSIC predictor set except the Decision
Tree classifier which recorded classification accuracy of 75.8%. The
AdaBoost methods showed robust performance on these predictors
with 86.3% prediction correctness, and the LR, SVM and KNN mod-
els produced good capability in differentiating samples with 83.2%
accuracy. The Lasso method identified predictors that resulted in
the SVM and LRmodels scoring an exemplary 96.8% and 95.8% accu-
racy respectively on the dataset (which is >20% on the baselines and
10% more than the best precision from the HSIC feature set.) Given
high dimensional data with several highly correlated variables, all
of which are related to some extent to the response variable, lasso
tends to pick only one or a few of them and shrinks the rest to 0 [26].
The gene variants or alleles identified by the Lasso method The
LASSO is noted to be well suited where the number of predictors
may be large relative to the sample size, and the predictors may be
correlated [29]. Given the high dimensional data, the lasso estimator
seems to pick only the significant gene variants which are highly
associated with the outcomes and shrinks the other relevant highly
correlated genes to zero. The heatmap of Figure 4 shows that the
selected features have low correlation between the members. This
is also suggests the highly correlated genes, which normally share
one common biological pathways, may not be relevant genes in the
determination of prostate tumor malignancy. The performance of
SVM degrades with gene expression profiles are noisy due to both
biological and technical variations in the data and with the Lasso
feature set devoid of such challenges, the SVM performs flawlessly.
Logistic regression on the other hand achieves excellent results on
the lasso features due to the low correlations among the predictors
and reduced incidence of influential outliers [15].

5 CONCLUSIONS
The machine learning models in general yielded higher prediction
scores on the Lasso feature sets by a wide margin. The combination
of the SVM and LR classifiers applied to features selected from the
Lasso method produced the most robust performance in predic-
tion with accuracy scores of 97% and 96% respectively. The models
detected many biomarker genes or alleles including CA2320112,
CA2328529, CA2436168, CA2841386 and CA2844385 and showed
they are highly correlated with the classes studied. The empirical
results indicated that the Lasso method was able to identify the
most significant set of genes and showed that the selected genes
can be used to differentiate the tumor stages. This study revealed
the proposed method can learn discriminative genes in prostate
tumor and classify the malignant or benign cancer accurately. The
classification model could be further applied in the clinical practice
to provide valuable information for cancer treatment and precision
medicine. The limitation of this study is that it assesses the prostate
tissue samples in the dataset without considering the fibroblasts.
Future research of this study is to conduct a multi-class classifi-
cation of the prostate samples including fibroblasts and explore

modifications of the experimental processes for the application of
the deep learning models.
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