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Abstract— Convolutional neural networks (CNN) have been
frequently used to extract subject-invariant features from
electroencephalogram (EEG) for classification tasks. This ap-
proach holds the underlying assumption that electrodes are
equidistant analogous to pixels of an image and hence fails
to explore/exploit the complex functional neural connectivity
between different electrode sites. We overcome this limitation
by tailoring the concepts of convolution and pooling applied
to 2D grid-like inputs for the functional network of electrode
sites. Furthermore, we develop various graph neural network
(GNN) models that project electrodes onto the nodes of a
graph, where the node features are represented as EEG channel
samples collected over a trial, and nodes can be connected
by weighted/unweighted edges according to a flexible policy
formulated by a neuroscientist. The empirical evaluations show
that our proposed GNN-based framework outperforms stan-
dard CNN classifiers across ErrP, and RSVP datasets, as well
as allowing neuroscientific interpretability and explainability to
deep learning methods tailored to EEG related classification
problems. Another practical advantage of our GNN-based
framework is that it can be used in EEG channel selection,
which is critical for reducing computational cost, and designing
portable EEG headsets.

Index Terms— Graph neural networks (GNN), Convolutional
neural networks (CNN), electroencephalogram (EEG) classifi-
cation.

I. INTRODUCTION

Deep convolutional neural networks (CNN) have been
frequently used in extraction of task relevant features from
physiological data, such as electroencephalogram (EEG) and
electromyogram (EMG) signals, to devise more robust human-
machine interfaces (HMI). However a generic CNN is good
at learning features from grid-like data structures like images,
where each pixel is equidistant to neighboring pixels. Feeding
EEG data to a CNN typically uses two methodologies:

1) Applying 2D convolutions to each EEG trial, which
is presented a pseudo-image RC×T , where C denotes
number of EEG channels, and T denotes number of
discretized time samples, which effectively treats the
EEG channels and time samples like spatial dimensions
for CNN processing.

2) Applying 1D convolutions along only the time axis
of the EEG trial, while treating the EEG channels as
separate channels of the CNN processing.
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In the 2D input case, arbitrarily stacking the time samples
for each of the EEG channels into a single row ignores
standard coordinates of EEG electrodes on a spherical head
model. Neglecting functional neural connectivity between
different parts of the brain oversimplifies the EEG feature
extraction process. On the other hand, CNNs using 1D
convolutions with the EEG channels used as CNN channels
underperform compared to the 2D convolutional case, since
CNNs are only good at learning local spatial patterns, and
not an effective approach to explore long-term temporal
dependencies for not being sensitive to the order of timesteps.

The main contributions of this work over the existing
studies are as follows:
• EEG-GNN properly maps the network of the brain as a

graph, where each electrode used to collect EEG data
according to intl. 10-5 system represents a node in the
graph and time samples acquired from an electrode
corresponds to that node’s feature vector.

• Adjacency matrix of this graph can be constructed
flexibly, e.g., i) every pair of nodes is connected by an
unweighted edge, ii) every pair of nodes is connected by
an edge weighted by the functional neural connectivity
factor, which is the Pearson correlation coefficient
between the feature vectors of the two nodes, iii) a
sparse adjacency matrix can be designed under the
constraint only nodes that are closer than a heuristic
distance are connected, or iv) a sparse adjacency matrix
can be constructed via k-nearest neighbors (k-NNG).

• One of the major drawbacks to using CNNs to classify
EEG data is they fail to provide a brain connectivity
mapping by identifying Regions of Interests (ROIs),
whereas EEG-GNN can learn and visualize the connec-
tivity between salient nodes, which addresses a critical
issue of neuroscientific interpretability.

(i) (ii)

Fig. 1: (i) is 2D CNN convolution, and the graph structure is
analogous to pixels of an image. We know functional neural
connectivity between electrode sites is arbitrary like in (ii).
Cognitive activity of one hemisphere or lobe is more salient
than the others for a specific EEG classification task, and
there are intricate relationships between different electrode
sites, which need to be explored.
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II. PRELIMINARY TO GNNS

A graph is a topological space which arises from a triplet
of vertices, edges and weights, G = (V,E,W ). Vertices are
a set of n labels where n is the total number of nodes:
V (G) = {1, . . . ,n}, where n := |V |. Edges, ei j, are ordered
pairs of labels (i, j). Weights, wi j, are associated to edges.
wi j represents strength of the influence of node j on node i.

The adjacency matrix of G is a typically sparse matrix A
with entries given by Ai j = wi j for all i, j. If G is symmetric,
then A is symmetric: A=AT. For the particular case in which
G is unweighted, weights are interpreted as units: Ai j = 1,
if node i and node j are connected, and otherwise 0. In an
unweighted graph, A has the same sparsity pattern, except
that now all nonzero entries will be 1.

The degree of a node i, denoted as di, is the sum of weights
in all of the incident edges that connect i to its neighbors.
The degrees of all nodes are grouped into the degree matrix
D. This is a diagonal matrix whose diagonal entry is the di. D
can also be written in terms of the adjacency matrix, because
the diagonal of D corresponds to the sum of the rows of A.

Having defined adjacency and degree matrices, we can
now define the Laplacian matrix, L, of a graph,

L = D−A (1)

The Laplacian can also be written explicitly in terms of the
weights of the graph. Since D is diagonal, off-diagonal entries
are simply given by opposite values of the corresponding
entries of A. Li j = −Ai j = −wi j. Assuming the graph has
no self loops, the diagonal entries of A are null, hence the
diagonal entries of L are simply the diagonal entries of D:
Li j = di.

Normalized versions of A and L are also utilized as matrix
representations of graphs. Both normalized adjacency and
Laplacian are defined by pre-emposed multiplication by the
inverse of square root of D,

Ã = D−1/2AD1/2 and L̃ = D−1/2LD1/2 (2)

These pre-emposed multiplications by D−1/2 result in rep-
resentations in which weights are expressed relative to the
degrees of individual nodes. Both Ã and L̃ will be symmetric
if the graph is symmetric. Further observed, given these
definitions L̃ can also be written as,

L̃ = I− Ã (3)

Graph shift operator S is a stand in operator for any of
the matrix representations of the graph. We can set it S = A,
S = L, S = Ã or S = L̃. The specific choice of S matters in
practice, but most of results and analysis hold for any choice
of S.

III. METHODOLOGY

The path towards scalable machine learning on graphs
begins from the generalization of the convolutional operator in
CNNs to signals supported on graphs. Once the convolutional
operator is generalized to graphs, we can easily generate
graph filter banks, combine these graph filter banks with

pointwise non-linearities, and then stack them into layers
to create GNNs. Graph convolutions follow a neighborhood
aggregation strategy collecting the node features, X ∈R|V |×F

(where |V | denotes number of nodes, and F denotes the size
of a node feature vector) within each node’s K-hop neighbors
to learn a representation vector of a node, hv, or the entire
graph, hG.

hG =
K−1

∑
k=0

σ(SkXWk), (4)

where σ is the pointwise non-linearity, S ∈ R|V |x|V | is the
graph shift operator, and Wk ∈RF×G is the graph filter, where
G denotes the number of filters applied to each node feature
vector. Multiplication by W gives the linear combination
of features at each node. hG iteratively updated K times to
capture structural information from K-hop neighbors. We
compare the discriminative power of various different GNN
implementations for classifying EEG, and benchmark their
performance against the state-of-the-art CNN models.

a) GraphSAGE: GraphSAGE learns an aggregated
neighborhood embedding, hk

N(v), via AGGREGATEk functions,
which distill high dimensional information from a node’s
K-hop neighbors, hk−1

u , ∀u ∈ N(v), in which N(v) is the
set of node v’s K-hop neighbors and u denotes the nodes
uniformly sampled from N(v) [1]. The aggregated neighbor-
hood embedding is then concatenated with the current node
representation, hk−1

v , and modulated by a trainable weight
matrix (by feeding through a fully connected layer), Wk,
which learns to propagate different levels of information
for different search depths, k, of a node, and incorporates
information about the graph structure. The output is passed
through a ReLU non-linearity, σ . Algorithm 1 summarizes
the procedure for the GraphSAGE algorithm.
Algorithm 1 GraphSAGE forward propagation - learning
graph embedding, hG.

1: h0
v ← Xv,∀v ∈ V Initialize a representation vector for

each node
2: for k = 1 . . .K do
3: for v ∈V do
4: hk

N(v)← AGGREGATEk({hk−1
u , ∀u ∈ N(v)})

5: hk
v← σ

(
Wk ·CONCAT(hk−1

v , hk
N(v))

)
6: hk

v← hk
v/
∥∥hk

v
∥∥

2

7: hG← READOUT({hK
v , ∀v ∈V})

AGGREGATE and READOUT functions must be invariant to
permutation of input node representations such as summation
or graph level max/mean pooling. We apply an element-wise
mean-pooling as AGGREGATE, where each K-hop neighbor’s
representation vector is fed through a fully connected layer
with ReLU non-linearity, and then an element-wise mean-
pooling operation is applied to each of the computed node
representations. READOUT returns the sum of node represen-
tations after graph convolution at the final iteration.

AGGREGATEk = mean({σ(Wpoolhk
ui
+b), ∀ui ∈ N(v)})

(5)
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Fig. 2: An EEG-GNN with graph convolutional operators and ReLU non-linearity applied on EEG signals mapped onto
the graph structure of the functional neural connectivity between EEG electrode sites. Graph convolution layer is based on
neighborhood aggregation approach, and encapsulates each EEG channel’s hidden state vector by aggregating information
from its neighboring electrode sites. As the number of graph convolution layers increases, we can get the hidden state vector
of further neighborhoods. For 2 graph convolution layers, each node (EEG electrode site) aggregates information from its
nearest neighbor and 2-hop neighbors. Following (i), we aggregate the node representations from the final iteration of graph
convolution via READOUT function to learn the representation vector of the entire graph. Then, the graph representation
vector is classified by a multi-layer perceptron (MLP) using softmax activation at the output layer. Optionally, following (ii),
we transform the output from the final iteration of graph convolution with ReLU non-linearity, and learn an embedding for
each EEG channel. This is particularly useful for tasks that require EEG channel selection instead of task classification.

b) Graph Isomorphism Network (GIN): GIN is con-
ceptually inspired by Weisfeiler-Lehman (WL) isomorphism
test, which reduces graphs to their canonical forms to check
whether they are topologically identical. Graph isomorphism
requires there is a bijective function f : G1→ G2 mapping a
graph G1 to another graph G2, while preserving adjacencies.
GIN proposes that if G1 and G2 are non-isomorphic, then
their embeddings hG1 and hG2 cannot be identical [2], [3].
It also proves if AGGREGATE and READOUT functions are
both permutation invariant and injective, then GNN is at most
as powerful as WL isomorphism test at recognizing different
graph structures [2].

A

A’

B

B’

C

C’

D

D’

E

E’

Fig. 3: An injective surjective mapping (bijection) between 2
topologically identical graphs. Adjacencies are preserved.

Nodes in different graph structures get the same embedding,
when mean and max operators are used to aggregate
information from neighboring nodes, as illustrated in Fig.
5, because these operators are non-injective. GNNs can
only be as powerful as WL isomorphism test, if and only
if AGGREGATE function maps an identical embedding for
two nodes from two graphs, only when these two nodes
have same subtree structures and same feature vectors in
neighboring nodes [4]. According to universal approximation
theorem, an MLP with one hidden layer can approximate
any measurable functions. Hence, GIN approximates the
solution to formulate an injective and permutation invariant

aggregation operator via training an MLP with a single hidden
layer as revealed in Equation 6, where λ is a learnable
parameter. Graph representation concatenates the summations
of node embeddings at the same iteration.
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Fig. 4: WL Subtree Kernel Method (i) All vertices are
assigned the initial color label 1, (ii) A signature string is
constructed for each vertex by concatenating its own color
label and its neighbors’ color labels. Then, all the signature
strings are compressed into their new integer color labels
in the lexicographical order, (iii) This process is repeated
until convergence to produce a canonical form of the graph.
Vertices with the same color label have structurally similar
roles in the graph.

Theorem 3.1 (Universal Approximation Theorem): Let σ

be a non-linear activation function, and x ∈ In. Given the
output of a one hidden layer MLP with weights w j,α j and
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(i) (ii)

v v’ v v’

(iii)

v v’

Fig. 5: (i) v and v′ would have the same node embedding, if
AGGREGATE function in (i) is mean or max, in (ii) is max,
and in (iii) is mean or max.

biases b j of the form,

G(x) =
N

∑
j=1

α jσ(w jx+b)

Then for any f ∈C(In), and ε > 0, there is a G(x) such that

|G(x)− f (x)| ≤ ε, ∀x ∈ In.

hk
v← MLPk

(
(1+λ

k) ·hk−1
v +∑

u
hk−1

u ,∀u ∈ N(v)
)

hG← CONCAT
(
READOUT({hk

v, ∀v ∈V}) | k = 0,1 . . .K
)
(6)

Since composition of injective functions is also injective,
node representations can be evaluated with a single MLP,

hv← MLP

(
(1+λ

k) ·hk−1
v +∑

u
hk−1

u ,∀u ∈ N(v)
)

(7)

Theorem 3.2: Let f : G → Rd be a GNN, and G1,G2
represent 2 graphs. f is as powerful as the WL isomorphism
test if AGGREGATE and READOUT functions are injective.
Since READOUT projects distinct node representations in the
domain to distinct graph representations in the codomain, we
only need to prove aggregating neighborhood features must
be injective [2]. Given node representations hk

v derived by
injective functions ψ and φ , and node labels lk

v assigned by
WL isomorphism test operator with injective function ϕ ,

hk
v← ψ

(
hk−1

v , φ

({
hk−1

u ,∀u ∈ N(v)
}))

lk
v ← ϕ

(
lk−1
v ,

{
lk−1
u ,∀u ∈ N(v)

})
We can prove by induction, ∃g ∈ {g(a) = g(b) =⇒ a =
b, ∀a,b ∈ R} that satisfies hk

v = g(lk
v).

Base case for k = 0: h0
v = g(l0

v ), ∀v ∈G1,G2, because initial
node representations are identical for f and WL subtree kernel
method.
Inductive step for k = k−1:

hk
v← ψ

(
g
(

lk−1
v

)
, φ

({
g
(

lk−1
u

)
,∀u ∈ N(v)

}))
Since the composition of injective functions is injective, this
can be rewritten using another injective function ω ,

hk
v← ω

(
lk−1
v ,

{
lk−1
u ,∀u ∈ N(v)

})
which is identical to,

hk
v← ω ◦ϕ

−1
ϕ

(
lk−1
v ,

{
lk−1
u ,∀u ∈ N(v)

})
= ω ◦ϕ

−1
(

lk
v

)

Since the composition ω ◦ ϕ−1 is also injective, f is as
powerful as WL isomorphism test to decide the multisets

{
lk
v

}
are unique for non-isomorphic G1 and G2 at each iteration k.

Pooling in CNNs downsamples the number of features in
the input, which reduces the number of model parameters,
and helps to avoid overfitting. SortPool, EdgePool, SagPool
and Set2Set propose different pooling operations that play a
similar role in GNNs.

c) SortPool: The key insight here is sorting vertices
based on their structural importance established by WL
isomorphism test in order to sequentially extract features
from a graph in a consistent order [5]. After K iterations
of graph convolution, SortPool layer gets an input of size
|V |×K · |hv|, where |V | denotes the number of nodes, and
|hv| denotes the size of a node’s embedding vector, which
is assumed to be identical for all the nodes. The output of
SortPool layer has size ρ×K · |hv|, where ρ is a heuristically
selected parameter, and ρ < |V |. SortPool layer sorts the color
labels in descending lexicographical order according to WL
subtree kernel method, and chooses the first ρ number of
nodes. Then, the sorted output is reshaped as a row vector
of size ρ ·K · |hv| × 1 and applied 1D convolutional layers
with kernel size K · |hv| followed by MaxPool. Final MaxPool
output is fed through a dense layer with softmax activation.

d) EdgePool: Given a weighted graph, softmax function
is applied to all edge weights to compute edge scores,
denoted as si j. According to these scores, edges are iteratively
contracted unless nodes have already been part of a contracted
edge [6], [7]. Edges between contracted nodes are preserved.
If there is an isolated node (a node with degree 0) after edge
contraction, edges between the isolated node and contracted
nodes are reconstructed. In the process of edge contraction,
node features are combined, and then multiplied by the edge
score, which allows the gradient to backpropagate through
edge scores. Let e = {vi,v j} is the edge contracting 2 nodes,
then hvi j = si j(hvi +hv j).

1

2 7

3 6

{1,7}

{6,5}

{2,3}

0.90.5

0.8
{4}4 5

0.2 0.2

0.8 0.50.9

Fig. 6: After EdgePool operator, number of nodes is down-
sampled by a fixed ratio of 2.

e) SagPool: SagPool uses both node features and graph
topology for pooling via a masking operator [8], as illustrated
in Figure 7. First, the graph convolution layer computes self-
attention scores, Z ∈ R|V |×1,

Z = σ(SXWatt) (8)

where Watt ∈RF×1 denotes the learnable pooling parameters.
Top-rank function [9] selects the indices of most useful ρ×|V |
number of nodes according to Z for a heuristic parameter ρ ∈
(0,1]. The pooled output is the element-wise multiplication
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of selected node features and attention scores,

idx = top-rank
(

Z,
⌈
ρ|V |

⌉)
, Zmask = Zidx

Xout = Xidx�Zmask

(9)

node 
ranking

Masking

Graph 
Convolution 
+ Activation

Fig. 7: Downsampling with SagPool operator.

f) Set2Set: It’s an extension of Seq2Seq framework,
which uses LSTM’s with attention mechanism for graph
level pooling. The pooled output, denoted as q∗t , is the
concatenation of the weighted sum of node embeddings,
and the query vector, which reads from the memory of an
LSTM [10].
Algorithm 2 Set2Set Pooling Operator

1: q∗0← zeros(1, input dim.) Initialize a zero vector for the
query vector q

2: hidden0← zeros(1,output dim.) Initialize a zero vector
for the hidden state of LSTM cell

3: cell0← zeros(1,output dim.) Initialize a zero vector for
the cell state of LSTM cell

4: hi Embedding of node i
5: for i ∈ {1,2, . . . |V |} do
6: qt ,hiddent ,cellt = LSTM(q∗t−1,hiddent−1,cellt−1)

7: αi =
hT

i qi

∑i hT
j qt

(attention params.)

8: rt = ∑i αihi (attention readout)
9: q∗t = [qt ,rt ]

10: hG = ReLU(Dense(q∗t ))

IV. DATASETS & SOFTWARE

a) ErrP: The detection of error-related potentials (ErrP)
to improve the accuracy of P300-based BCI speller [11].1 The
dataset was recorded from 16 healthy subjects participating
in an offline P300 spelling task. Spelling task had a fast mode
(each item was flashed 4 times), and a slow mode (each item
was flashed 8 times). Each subject performed 340 trials. If
there is an inconsistency between subject’s intention and BCI
system, elicited ErrP should be detected. EEG data were
recorded at a downsampled rate of 200 Hz from 56 channels.
A trial has 250 discretized time samples, and is associated
with a binary class label: erroneous (inferred item is different
from the intent of subject) or correct feedback.

b) RSVP: A BCI system to type based on rapid serial
visual presentation (RSVP) paradigm [12].2 The dataset was
collected from 10 healthy subjects, and consists of 41,400
trials of 16 channel EEG data. A g.USBamp biosignal am-
plifier with active electrodes was used to record trials during
RSVP keyboard operations. Each trial has 128 discretized
time samples, and is associated with one of the 4 labels:

1https://www.kaggle.com/c/inria-bci-challenge/
2http://hdl.handle.net/2047/D20294523

emotion elicitation, resting-state, or motor imagery/execution
task.

We use PyTorch Geometric v1.8.0 [13] to implement GNN
variants. All models were trained with a minibatch size of
256 for 400 epochs on NVIDIA Tesla K80 12GB GPU, and
optimized by Adam with an initial learning rate of 0.001,
which decays into half every 50 epochs. EEG trials from
all subjects were shuffled, first 80% of EEG trials was used
for training, and the last 20% was used for validation. If
there was an improvement in classification accuracy on the
validation dataset, model checkpoints were saved.

V. RESULTS & DISCUSSION

a) Edge Formation: We present 6 different methods to
connect electrode sites by edges e.g., i) each pair of electrode
sites is connected (complete graph), ii) graph is complete, and
allows self-loops, iii) electrode sites x and y are connected
by an edge, if the distance between is among the k-th lowest
distance that connects an electrode to x (k-NNG), iv) k-NNG
allows self-loops, v) each pair of electrode site is connected,
if the Euclidian distance between is lower than a heuristic
threshold, vi) distance thresholding for the edge formation
procedure allows self-loops. Empirical results in Table II
and III indicate that connecting electrode sites with only
their nearest neighbor provides a classification accuracy as
good as a complete graph, while also saving training time,
and model size. Therefore, we conclude that using fewer
electrodes, and a sparse adjacency matrix does not cause a
drop in classification performance, but has a positive impact
on the system efficiency.

b) Parameter Regularization: Although GNNs have a
high expressive power learning over graph structured data,
there is no theoretical guarantee on their generalizability.
Empirical results show that they are prone to overfitting for
small datasets, and suffer from issues of poor convergence.
In our experiments, we compare the performance of L1, L2,
and elastic net regularization across different values of hyper-
parameters to avoid overfitting. While the L1 penalty imposes
sparsity by adding the absolute value of the magnitude of
model weights modulated by the hyperparameter α to the loss
objective, L2 penalty imposes feature selection, and shrinks
weights towards 0, by adding the square of the magnitude
of weights modulated by β . Elastic net performs concurrent
regularization with both the L1 and L2 penalty. In Table IV,
we finetune α and β , and report classification performance
for neural connectivity between electrode sites constructed
according to k-NNG (k = 1). Fast convergence, and sub-
optimal optimization of model parameters were common
issues (as also reported by other practitioners training GNNs
in different domains [14]), despite our tests across smaller
learning rates, parameter regularization, data augmentation,
and node feature selection to reduce model bias, and variance.
GNN models have one pitfall in that they tend to overfit quite
heavily in small datasets.

c) Data Augmentation: Training data is augmented by
adding white Gaussian noise (AWGN) to every channel of
the original signal. The variance of this zero-mean Gaussian
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random variable affects the average noise power, and is
specified to obtain SNR levels of 10, 5, and 2 dB. Desired
SNR level is the difference between signal power and noise
power in dB. This provides a three-fold increase in the number
of EEG trials in the training datasets.

d) Temporal Compression: GNN models that classify
EEG datasets defined over spatial-temporal graphs become
more susceptible to overfitting as the number of features
associated with each node increases due to a higher number
of model parameters [4]. This turns out to be even more
problematic while learning over EEG datasets, because
number of samples per trial, which is equivalent to number of
node features, is 250 for ErrP, and 128 for RSVP. We apply
1D convolutions with kernel size of 1×3 and stride 2 along
the time axis of a trial, and then adopt batch normalization.
This downsamples number of node features by 2, and also
helps to capture temporal dependencies. We stack several
layers of 1D convolutions, and reduce the number of node
features to 32.

We benchmark the performance of EEG-GNN against
the state-of-the-art CNN classifiers in Table I. Compared
to a standard CNN classifier of similar model size, GNN
models significantly improve the accuracy by 2.0% for ErrP,
whereas the improvement for RSVP is 0.4%. Compared
to AutoBayes classifiers [15], which detect the conditional
relationship between data features, task labels, nuisance
variation labels (subject IDs), and potential latent variables
in DNN architectures to identify the best inference strategy,
GNN models still have higher classification performance,
while reducing model size more than 20x. Although GNN
models don’t take advantage from adversarial learning using
variations in subject IDs, they perform 0.8% better for
ErrP, and nearly same for RSVP. Identification of best
Bayesian network trained in an adversarial setting helps with
getting a non-dispersive distribution of the accuracies across
different subjects and hence provides more robustness against
subject variation; however GNN classifiers demonstrate an
accuracy equivalent to the best Bayesian network selected by
AutoBayes framework.

TABLE I: Task classification performance of GNN compared
to a CNN classifier, AutoBayes models, and the ensemble of
AutoBayes.

Method ErrP RSVP

Acc. # Model Params. Acc. # Model Params.

EEG-GNN 76.73±0.40 106,562 93.49±0.10 83,138
Standard CNN 74.72±0.31 127,335 93.07±0.15 268,865

Best of AutoBayes 75.91±0.44 3,407,390 93.42±0.15 2,005,917

We further benchmark the performance of EEG-GNN
against the standard CNN classifiers by exploring different
network configurations in Fig. 8. Pareto front connects the
model configurations with superior performance proceeding
from low to high complexity regime. It is observed that EEG-
GNN performs significantly higher in low complexity regime
than the standard CNN classifier. However, the performance
gap reduces in high complexity regime. These results highlight
the problem that scaling up GNN models to exploit multi-hop

neighborhoods does not necessarily improve the performance.
Vanishing gradient problem is encountered while training
deeper GNN models. Using skip connections between graph
convolutional layers can mitigate the effects of vanishing
gradients, and allow to capture the representations of higher
order graphs.

VI. CONCLUSION & FUTURE WORK

In this paper, we presented several GNN models along with
various regularization strategies to model the functional neural
connectivity between EEG electrode sites, and demonstrated
GNN models outperform CNN models of different size and
inference strategies in classification tasks across ErrP and
RSVP datasets. There are many interesting directions for
prospective research. For instance, we are currently learning
models over unweighted graphs, but we can also use the Pear-
son correlation coefficient between EEG channels to represent
the edge weights. Another interesting approach is to entirely
eliminate a hand-engineered design of adjacency matrix, and
learn a graph shift operator matrix along with model weights
during training, in order to better capture the data topology.
This would require parameterizing the graph shift operator
matrix, transferring it to graph convolutional operators, and
then appropriately taking gradients in backpropagation.
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Fig. 8: Accuracy vs. Space Complexity

TABLE II: Performance of datasets: Edge index matrix construction using a complete graph (all), a complete graph containing
self-loops (all with self-loops), computing graph edges to the nearest k neighbors (k-NNG), and k-NNG containing self-loops
(k-NNG w. self-loops).

Dataset Model All All w. Self-Loops k-NNG k-NNG w. Self-Loops

k=1 k=2 k=4 k=1 k=2 k=4

ErrP

GraphSage 74.44±0.75 75.94±1.42 74.04±0.98 74.89±1.88 75.29±0.70 74.34±0.62 74.47±0.88 76.33±0.69

Set2Set 75.38±0.54 74.62±0.17 75.66±0.82 74.37±0.83 75.88±1.18 75.38±0.90 73.27±0.50 74.53±1.04

SortPool 72.90±0.61 74.83±1.71 73.52±0.53 74.99±0.16 74.56±0.39 75.23±0.85 74.34±0.70 75.08±0.53

EdgePool 73.03±0.96 73.05±0.72 73.98±0.54 75.60±0.72 74.19±0.53 75.11±1.17 74.56±1.80 76.24±1.28

SagPool 74.71±1.09 75.57±0.80 73.52±0.80 75.66±1.74 74.96±0.59 74.53±0.54 75.78±2.17 74.86±1.32

GIN0 75.48±0.60 76.09±1.15 75.26±1.95 73.79±0.56 75.14±0.59 76.24±0.85 74.99±1.00 74.44±0.62

RSVP

GraphSage 93.27±0.05 93.25±0.35 93.05±0.11 93.47±0.06 93.22±0.08 93.09±0.33 93.08±0.20 93.23±0.17

Set2Set 93.33±0.09 93.19±0.22 92.94±0.11 93.34±0.17 93.24±0.26 93.30±0.24 93.32±0.10 93.26±0.07

SortPool 93.24±0.20 93.36±0.16 93.39±0.28 93.38±0.27 93.29±0.21 93.05±0.34 93.31±0.14 93.35±0.24

EdgePool 92.89±0.04 93.02±0.26 93.32±0.06 93.47±0.49 93.39±0.23 93.31±0.06 93.49±0.17 93.43±0.22

SagPool 93.45±0.19 93.34±0.09 93.14±0.23 92.99±0.16 93.36±0.02 93.24±0.20 93.03±0.07 93.07±0.11

GIN0 93.26±0.07 93.23±0.01 93.18±0.10 93.07±0.19 93.23±0.11 93.14±0.34 93.10±0.18 93.22±0.10

TABLE III: Performance of datasets: Edge index construction using a distance threshold for the formation of edges, and
distance threshold containing self-loops.

Dataset Model Distance Distance w. Self-Loops

d=0.3 d=0.4 d=0.5 d=0.3 d=0.4 d=0.5

ErrP

GraphSage 75.05±0.45 74.86±1.50 75.81±1.99 75.78±1.02 74.89±0.50 74.89±0.61

Set2Set 74.68±2.02 74.07±0.71 75.02±0.57 75.57±0.38 76.15±1.11 74.25±1.20

SortPool 75.94±0.95 74.16±0.26 74.34±1.59 74.99±1.62 73.79±0.84 74.62±0.45

EdgePool 74.71±0.75 74.83±0.41 74.47±1.53 75.84±0.55 75.23±0.74 74.56±1.23

SagPool 76.06±0.74 74.40±1.32 76.15±0.53 73.88±0.67 74.47±1.20 74.80±1.28

GIN0 76.06±0.91 74.65±0.66 74.83±0.85 76.03±1.05 75.75±0.51 75.97±0.46

TABLE IV: Performance of datasets: Hyperparameter selection for L1, L2, and ElasticNet Regularization of GNN models.

Dataset Model L1 Regularization L2 Regularization ElasticNet Regularization

α = 0.1 α = 0.01 α = 0.001 β = 0.2 β = 0.4 β = 0.8 Best of α&β

ErrP

GraphSage 76.55±0.87 76.30±1.00 74.07±0.23 75.54±0.44 74.56±1.20 74.93±1.41 73.39±0.22

Set2Set 74.86±0.20 74.65±1.48 74.56±1.65 74.68±0.67 76.18±0.19 74.22±0.96 74.50±0.34

SortPool 75.14±0.33 74.89±1.78 74.80±1.74 73.73±1.36 75.26±0.71 74.65±0.74 73.94±0.82

EdgePool 73.64±0.17 74.96±1.02 76.15±1.06 74.99±0.46 74.96±1.05 75.23±0.23 73.76±0.67

SagPool 75.60±0.40 76.58±0.54 75.11±0.30 74.13±0.23 74.19±1.13 75.23±1.04 73.58±0.36

GIN0 75.60±0.42 75.02±0.55 75.17±1.01 74.40±1.35 76.73±0.40 74.56±1.06 74.04±0.85

RSVP

GraphSage 92.51±0.19 93.49±0.10 93.07±0.32 92.64±0.28 92.60±0.11 92.76±0.13 92.89±0.12

Set2Set 93.03±0.17 93.12±0.13 93.22±0.27 92.93±0.08 92.97±0.11 93.03±0.30 91.47±0.20

SortPool 93.14±0.12 93.11±0.20 92.91±0.13 92.71±0.31 93.10±0.13 92.74±0.08 92.90±0.12

EdgePool 93.49±0.10 93.29±0.10 93.12±0.04 93.12±0.01 93.13±0.19 92.74±0.19 92.57±0.16

SagPool 93.09±0.18 93.18±0.21 93.38±0.30 92.74±0.09 93.08±0.17 92.91±0.34 92.87±0.23

GIN0 92.87±0.10 93.26±0.12 93.13±0.21 92.93±0.06 93.07±0.13 92.49±0.13 92.85±0.15
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