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Abstract— The primary aim of image super-resolution tech-
niques is to produce a high resolution (HR) image from a
low resolution (LR) image efficiently. Deep learning algorithms
are being extensively used to address the ill-posed problem of
single image super-resolution which requires extremely large
data-sets and high processing power. When one does not have
access to large data-sets or have limited processing power, an
alternative technique may be in order. In this study, we have
developed a novel positive scale image resizing method inspired
by compressive sensing (CS). We have considered the image
super-resolution as a CS recovery problem in which a low res-
olution image is assumed as a compressed measurement and the
required interpolated image is treated as output of the CS-based
recovery. In the proposed HR recovery method, a deterministic
binary block diagonal measurement matrix, (DBBD), is used
as measurement matrix since it maintains the visual similarity
between the low and high resolution images. Then along with a
sparsification matrix, the sparse representation of HR image
is first recovered and subsequently the dense HR image is
obtained. The proposed method is applied to medical and non-
medical images. The HR images obtained using the traditional
proximal, bilinear and bi-cubic interpolation techniques are
compared with those obtained using the proposed method. The
proposed CS inspired method delivers superior HR images
than the traditional techniques. The superiority of the proposed
method is attributed to the unique usage of the DBBD matrix
and the CS recovery algorithm to obtain a high resolution image
without any prior training data-set.

Index Terms–Compressive Sensing, Image interpolation, Im-
age Super-Resolution, Deterministic sensing matrix, Recovery
techniques

I. INTRODUCTION

Images with high resolution help in making better di-
agnostic decisions from medical images. Often an image
with higher resolution (HR) will enable better detection of
anomalies such as tumors and cancerous cells than a low
resolution (LR) image. The quality and the resolution of an
image obtained through various medical imaging systems
such as X-rays, magnetic resonance imaging or computer
tomography play a crucial role in the diagnosis of a disease.
With high resolution images, it is possible to design auto-
matic diagnostic tools that could aid medical professionals
to make accurate decisions. It also enables doing object
detection and image segmentation with higher accuracy [3].
Realizing this, many diagnostic tools based on deep learning
models [1], [2] have been proposed lately. All these models,
however, require lot of images for training purposes. When
only one low resolution image is available, no learning
model can be developed. This paper aims to perform super-

resolution (SR) from just a single low resolution (LR) image
under the assumption that there is no access to any huge
dataset.

The term SR can be defined as a technique to enhance
or increase the resolution of an image. Single image super-
resolution (SISR) aims to generate a HR image from a LR
one. Traditionally, super-resolution is attempted either using
multiple images and solving for a set of linear constraints or
by learning relationship between LR and HR image patches
from a database (called example-based approach) [4]. Since
the mapping between LR image and HR images are not
unique, SISR is an ill-posed problem for image recovery
[5]. Although multiple HR images were used in [6] to
reconstruct the HR image, the reconstructed image was not
guaranteed to contain true HR details. Since recovery of HR
was based on multiple examples, new learning algorithms
such Bayesian approach [7], neighbour embedding method
[8], recovery using sparse patches from LR images [9]
were introduced. Over the years, interestingly even for SISR
problem, deep learning (DL)-based approaches have become
the most sought method.

Amongst the DL-based approaches, the SR convolu-
tional neural network (CNN) has become the benchmark
architecture for DL-based SR algorithm [10]. Deep neural
network based unsupervised algorithms such as the deep
Boltzmann machine [11], variational autoencoder (VAE) [12]
and generative adversarial nets (GAN) [13] have also been
implemented to handle unlabeled data situations. All these
methods claim their superiority in terms of accuracy but
do not highlight the shortcomings associated with them.
Firstly, DL algorithms need large pre-trained data-sets for
efficient mapping (or learning) which may not be available
in many problems. Secondly, DL techniques are image
specific. Thirdly, the DL networks may have the problem of
over-fitting. Particularly for medical images, such erroneous
results may lead to wrong diagnosis. Lastly, implementation
of DL algorithms are computationally intensive and therefore
require computers with huge processing capability. Unfortu-
nately, DL methods are of no avail when only one LR image
is available and needs to be converted into a SR image.

To overcome the aforementioned shortcomings, non-
learning based algorithms may be used. Traditional predic-
tion models or interpolation techniques such as proximal,
bilinear or bicubic interpolation use weighted average neigh-
bouring LR pixel intensities to generate a HR image. The
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major drawback of these techniques is that they generate
a smoother version of the HR image losing large gradients
along the edges and at high frequency regions.

Learning-based approaches were used in CS for SR
applications in [14], [15]. A learning-based CS recovery
method utilizing sparsity of HR image in wavelet domain
and its recovery using greedy algorithm was introduced in
[16]. Later, an analogy between CS and SR was drawn to
demonstrate a better understanding of the role of sparsity
priors and the properties of the projection operators and
dictionaries [17], [18]. In this paper, we address the problem
of SISR and present a unique non-learning based approach
to obtain the HR image through CS-based recovery with just
a single image.

A deterministic binary block diagonal (DBBD) matrix that
preserves the structural similarity between the LR and HR
images in the recovery process is used in this work. Instead of
recovering the HR image directly, first a sparse representation
of the HR image is recovered. Discrete cosine transform
(DCT)-domain is assumed to sparsify the considered images.
A fast CS recovery algorithms, smoothed `0 (SL0) [19],
in order to reconstruct a HR image is implemented. A
comparative study between the various traditional interpola-
tion techniques and the proposed technique using objective
quantitative measures like peak signal-to-noise ratio (PSNR),
mean square error (MSE) and structural similarity index
(SSIM) is presented. Since there is no pre-trained data-set
or learning involved, the proposed SR approach is computa-
tionally inexpensive. Moreover, the use of CS-based recovery
helps in preserving the gradients at high frequencies. Thus,
this proposed method successfully overcomes the drawbacks
of the DL-based and the interpolation-based approaches. The
idea of this paper is to recover a HR image from a single
LR image without any external information.

The paper is organized in the following manner. Section
II gives a brief overview of compressed sensing and its
recovery, measurement and sparsification matrices.Section
III contains the proposed method, Section IV provides the
results, Section V presents the discussion while Section VI
concludes the paper.

II. COMPRESSIVE SENSING

CS is a sampling technique that enables reconstruction
of sparse signals which are sampled well below Nyquist
rate. In this section, both 1-D CS and 2-D CS principles
are discussed briefly.

A. 1-D compressive sensing

CS involves compression and recovery of sparse signals
in some known basis. A sensing or measurement matrix is
the matrix that transforms a sparse vector from a higher
dimension to a lower dimension. The sensing matrix is
generally a random matrix that results in a compressed vector
that does not preserve any similarity between the input and
the compressed samples. Thus to overcome this, determin-
istic matrices can be used as sensing matrix. Deterministic
matrices preserve the structure of the input vector.

Considering a K-sparse signal, x ∈ Rn that needs to be
compressed. Let Φ be a m×n sensing matrix, where m <<
n. [20], [21]. Let y ∈ Rm be the measurement vector given
by:

y = ΦΨs (1)

where the sparse vector s is given by s = ΨTx and ΨT is
an orthonormal matrix which sparsifies the signal x and T
is the transposition operator.

Since the above system is under determined, the problem
of recovery is ill-posed and has infinite solutions but due
to the sparse representation of x with respect to Ψ, the
recovery can be done by finding the sparse vector ŝ through
l0-minimization:

ŝ = min
s
||s||0

st. y = ΦΨs (2)

Now the signal x̂ can be reconstructed from the estimated
ŝ using the following equation:

x̂ = Ψŝ (3)

In order to obtain the sparse solution, the sensing matrix,
Φ, should have Restricted Isometric Property (RIP) [22],
[23], [24]. Since RIP is difficult to confirm, mutual coher-
ence between the sensing matrix, Φ, and the sparsification
matrix, Ψ, may be used.The mutual coherence between these
matrices should be very low for a good recovery. Random
matrices satisfy both these properties but the compressed
measurement and and the input signal are visually different.
Recently, in [25], a deterministic matrix called Determinis-
tic Binary Block Diagonal (DBBD) matrix was proposed.
This matrix ensured that the compressed measurement was
visually similar to the input signal.

Deterministic Binary Block Diagonal matrix (DBBD) is
a unique binary matrix with values of 1 only along the
diagonal.Following is an example of Deterministic Binary
Block Diagonal (DBBD) sensing matrix (Φm×n) in small
size (m = 4 rows and n = 8 columns)

Φm×n =


1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

 (4)

Diagonal ‘blocks’ of this matrix containing r = n
m

=
8
4

= 2, 1s and the rest are zero. The mutual coherence
of this matrix with the DCT dictionary is lower than other
sensing matrices.

B. 2-D Compressive Sensing

Consider a 2-D signal, X ∈ Rn×n, where n is a large
number. CS for this image can either be block-based [26] or
column-based following the 1-D CS paradigm. Block-based
sensing leads to a computationally intensive recovery process
and also requires the identification of sparse blocks during
the sensing process. Unfortunately, often sparse blocks are
not known a-priori and thus even the sensing process be-
comes computationally challenging. In [27], it was shown
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that each column of the image could be compressed and
recovered individually following 1-D CS. The work in [28]
extended the column CS idea to the rows of the image
and applied CS on both, columns and rows, to obtain a
compressed image following the work in [29]. Without loss
of generality, if we suppose the same measurement matrix
is applied to the both rows and columns of an image, the
row-column wise sensing of an image can be obtained as
follows:

Ym×m = Φm×n × [(Φm×n ×Xn×n)]T (5)

where superscript T stands for matrix transpose. Equation 5
shows that this model equals to applying CS two times as
follows:

Zm×n = Φm×n ×Xn×n (6)

Ym×m = Φm×n × (Zm×n)T (7)

In the above equation, the column compressed output of the
original image, Zm×n, is transposed to compress the second
time CS. This process is shown in Fig. 1.

Fig. 1. Compression Stage

III. PROPOSED SUPER-RESOLUTION METHOD

In image super-resolution, there is a high visual similarity
between the LR and the corresponding HR images. From
Section II, X is the original HR image while Y is the LR
image. If the visual similarity between HR and LR images
needs to be maintained, then the measurement matrix cannot
be a random matrix and should be a deterministic matrix. It
was reported in [26], [27] that DBBD measurement matrix
maintains the visual structure between Y and X. In this
work, we suppose the given LR image was obtained by
2D CS compression where the HR image was sensed using
DBBD matrix. Therefore, the SR problem is viewed as a 2-
D CS recovery (inverse problem), i.e. obtaining X given Y
and ΦDBBD.

A. 2-D CS Recovery

Since we suppose the X (HR image) has been com-
pressed column-wise and row-wise, we apply recovery in
two steps to obtain the HR image. For simplicity, let us
suppose Am×n = Φm×n × ψn×n. In the first recovery
stage, we reconstruct the approximately sparse matrix Ŝn×m

(sparse with respect to the columns, i.e. each column ŝi
is approximately sparse) with the help of the following l1-
minimization problem:

min
ŝi∈Rn×1

‖ŝi‖1 s.t ‖yi−Aŝi‖2 < ε i = 1, 2, ...,m

(8)
Ŝ contains m approximately sparse vectors, and Zn×m ≈
Ẑn×m = ψn×n × Ŝn×m. Ẑ can be assumed as interpo-
lated image along its columns. We apply the recovery second
time to reconstruct the interpolated image along its rows as
well. In this case Ẑ transposed is used as measurement for
the second recovery as follow:

min
si∈Rn×1

‖si‖1 s.t ‖ẑi −Asi‖2 < ε i = 1, 2, ..., n

(9)
where ẑi is the ith row of the Ẑ and ε is a user defined
threshold. After the recovery, S contains n approximately
sparse vectors, and Xn×n ≈ X̂n×n = ψn×n × Sn×n.
X̂ is the final HR image which has been interpolated along
its columns and rows.

IV. SIMULATION RESULTS

In this work, we performed our simulations with standard
test images available in MATLAB as well as with Magnetic
Resonance Imaging (MRI) brain images mentioned in [27].
The procedure adopted there in to obtain the 2-D images was
followed. As mentioned in [27], each case contained 90 3-D
slices. Each 3-D data sequence of 100ms interval was further
sliced to 2-D images of size 256 × 256 using the slicer
program available along with database. We chose randomly
3 slices, from three randomly chosen cases of 2-D images,
to conduct our evaluation. The code that we developed is
available for download from [30]. The LR images for this
study were obtained using “resize” command of MATLAB
on the original HR images available in MATLAB and the
database. Then we applied our proposed SR method, and also
the standard SR methods such bicubic, bilinear, and nearest
neighbour to compare the performance of our proposed
method. For the proposed method, we used DBBD matrix
as measurement matrix and DCT dictionary as sparsifying
basis. SL0 method was used to obtain the sparse matrix
and with the DCT dictionary, the original HR image was
obtained.

To evaluate the quality of obtained HR images, their cor-
responding ground truth images were used and metrics such
as the peak signal-to-noise ratio (PSNR) and mean squared
error(MSE) were calculated. The following equations for
PSNR and MSE were used:

MSE =
1

NM

N∑
i=1

M∑
j=1

(Xij − X̂ij)
2

PSNR = 10 log10

R2

MSE

(10)

where Xij is the pixel of ith row and jth column of original
HR image (ground truth) and X̂ij is the corresponding pixel
of the HR image obtained using our proposed and standard
SR methods. R is the maximum possible pixel value of the
obtained HR image.
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We also measured the structural similarity using structural
similarity index between the original and output image to
further affirm the similarity [31]. SSIM is a multiplicative
combination of luminance, contrast and structure. Mathemat-
ically, it can be written as:

SSIM =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(11)

where µx and µy are the means of x and y respectively,
σ2
x and σ2

y are the variances of x and y respectively and c1
and c2 are two variables to stabilize the denominator. Our
simulation results show that proposed model outperforms
standard methods of image interpolation in terms of output
PSNR, MSE, and SSIM indices.

Fig. 2. Simulation results of standard test images

Original image 

size: 256*256px

Down-sampled 

size: 128*128px

PSNR nearest: 39.2301

MSE nearest: 7.7637

SSIM nearest: 0.97463

PSNR bilinear: 41.5932

MSE bilinear: 4.5057

SSIM bilinear: 0.98247

PSNR bicubic: 44.1235

MSE bicubic: 2.5161

SSIM bicubic: 0.98956

PSNR CS: 46.9924

MSE CS: 1.2997

SSIM CS: 0.99322

Original image 

size: 256*256px

Down-sampled 

size: 128*128px

PSNR nearest: 39.8167

MSE nearest: 6.7828

SSIM nearest: 0.9728

PSNR bilinear: 42.8344

MSE bilinear: 3.3856

SSIM bilinear: 0.98381

PSNR bicubic: 45.1404

MSE bicubic: 1.9908

SSIM bicubic: 0.99018

PSNR CS: 47.3105

MSE CS: 1.2079

SSIM CS: 0.99291

Original image 

size: 256*256px

Down-sampled 

size: 128*128px

PSNR nearest: 41.2302

MSE nearest: 4.8985

SSIM nearest: 0.98039

PSNR bilinear: 44.1139

MSE bilinear: 2.5217

SSIM bilinear: 0.98886

PSNR bicubic: 46.419

MSE bicubic: 1.4831

SSIM bicubic: 0.9935

PSNR CS: 48.2904

MSE CS: 0.96391

SSIM CS: 0.99489

Fig. 3. Simulation results of MRI images

V. DISCUSSION

In Fig. 2 and Fig. 3, it is observed that our method
results in high PSNR value, low MSE value and SSIM value
closer to 1 when compared to other standard methods. High
PSNR value indicates that the image recovered has less noise
whereas low MSE value shows greater similarity between the
original image and the reconstructed image. SSIM close to 1
indicates high structural similarity of the interpolated image
with the original image. Our method successfully recovered
the image even though there was a high loss of information
due low-pass filter attenuating some of the high frequency
components. However, an image with a large number of high
frequency components or extremely low resolution (below
128 × 128) may lose some amount of information while
sensing.
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VI. CONCLUSION

In this paper, we have proposed a novel method to
resize input images through compressed sensing recovery.
We have used SR in framework of compressed sensing, that
is, conversion of a low resolution image to a high resolution
image using compressed recovery technique. Our model
uses deterministic matrices as sensing matrices which makes
recovery efficient and accurate. It is confirmed from the
simulation results that this method outperforms the standard
image resizing techniques like the nearest neighbour, bilinear
and bi-cubic in terms of objective measurement and visual
quality. The high value of PSNR, the low MSE value and
SSIM close to 1 indicates a good recovered high resolution
image with edges well-preserved. We have demonstrated that
the proposed SR technique is effective for both regular and
medical images.
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