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Abstract— Wearable actigraphy sensors have been useful
tools for unobtrusive monitoring of sleep. The influence of the
composition and characteristics of study groups such as normal
sleep versus sleep disorders affecting the efficacy of sleep
assessment using actigraphy has not been fully examined. In this
study, we present multi-variate sleep models using actigraphy
features obtained from wrist-worn sensors and evaluate the effi-
cacy of sleep detection compared to the overnight polysomnog-
raphy from two unique datasets: overnight actigraphy record-
ings in a control population of young healthy individuals (n=31)
and 24-hour actigraphy recordings in a more heterogeneous
population (n=27) comprised of normal and abnormal sleepers.
We evaluate the performance of actigraphy derived logistic
regression (LR) and random forest (RF) sleep models for both
intra-dataset and inter-dataset training and cross-validation.
Both the LR and RF sleep models for the healthy sleep
dataset show an area under the receiver operating characteristic
(AUROC) of 0.85+0.02 in the control sleep dataset among
50 random splits of training and testing evaluations. We find
the AUROC performance from the heterogeneous sleep dataset
involving sleep disorders to be relatively lower as 0.74+0.05 and
0.80+£0.03 for LR and RF sleep models, respectively. Optimal
sleep models trained using heterogeneous datasets perform very
well when tested with the normal sleep dataset producing
accuracy of ~92%. Our study supports that using a more
diverse training set benefits the sleep classifier model to be
more generalizable for both healthy and abnormal sleepers.

Index Terms— Modeling and analysis; Physiological moni-
toring - Modeling and analysis; Health monitoring applications

I. INTRODUCTION

Accurate sleep assessment can provide useful information
to indicate a subject’s physical [1] and psychological health
status [2]. Although polysomnography (PSG) is the gold
standard of clinical sleep assessment, it is both complex, ,
and not suitable for short-term or long-term sleep monitoring.
By contrast, modern wrist-worn actigraphy devices, capable
of recording prolonged accelerometer data, are more simple
and convenient for daily sleep monitoring [3], [4].

Although a number of actigraphy techniques have been re-
ported to assess sleep quality in subjects with sleep disorders,
several limitations preclude the adoption of such practices
[5]. One of the major limitation is that, unlike typical study
cohorts involving normal young sleepers, those involving a
heterogeneous population that includes poor sleepers could
showcase limited efficacy of actigraphy-based sleep assess-
ment. Particularly, the estimated sleep epochs of abnormal
sleepers could be more inaccurate for actigraphy algorithms
involving simple rule based univariate approaches.
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Several studies have successfully adopted machine learn-
ing algorithms on wrist-worn accelerometer data for
sleep classification. One study applied four classifiers for
sleep/wake detection among normal young sleepers [6]. An-
other recently published paper used a random forest classifier
to detect the sleep patterns of a group of heterogeneous sleep-
ers [4]. However, a systematic analysis on the composition
and characteristics of study cohort influencing the machine
learning models’ efficacy for sleep assessment could be
very valuable. Therefore, studying whether machine learning
classifiers trained with a normal (or abnormal) sleeper dataset
can successfully detect the sleep patterns of another abnormal
(or normal) sleeper dataset requires further investigation.

The study presents actigraphy based multi-variate sleep
detection models involving logistic regression (LR) and
random forest (RF) classifiers, evaluates their performances
systematically in both a healthy homogeneous population
and a heterogeneous population with sleep disorders, and
delineates the influence of study composition on the efficacy
of sleep detection models using actigraphy.

II. METHODS

A. Data

1) Newcastle Sleep Dataset [7]: This dataset con-
tains left- and right-wrist tri-axial accelerometer data from
28 adult patients drawn from a one-night gold-standard
polysomnography (PSG) experiment. The accelerometer data
are recorded by a GENEActiv Watch at a sampling rate of
85.70 Hz. This study included only left-wrist accelerometer
data from 27 subjects comprised of 8 normal sleepers and
19 abnormal sleepers. The average data length is 9.6+1.6
hours for PSG recordings and the average sleep length 69.0%
over the entire dataset. The average age of the subjects is
45.6£14.4 years old.

2) Michigan 2019 Sleep Dataset [6], [8]: This dataset
includes accelerometer and heart rate measurements by an
Apple Watch and one night’s sleep scored from the PSG
recording. It contains 31 health subjects without any sleep
disorder problems. The tri-axial accelerometer data are sam-
pled at 50 Hz. The average data length for one subject is
7.2£1.5 hours for the PSG recording and the average sleep
length 91.0% over the entire dataset. The average age of the
subjects is 29.4+8.5 years old.

These public datasets were approved by the ethics com-
mittee and the institutional review board for the experimental
procedures involved with the human subjects.
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B. Actigraphy Features

Tri-axial accelerometer data were processed to extract the
actigraphy features based on the feature type (see below for
details), the calculation type (e.g., maximum, mean, sum, or
standard deviation), and the input data resolution (1-, 15-,
30-, or 60-second time windows). The sample rates of 50
Hz and 85.7 Hz used in these two datasets are sufficient to
capture all bodily motion [9], and the feature calculations are
not impacted by the different sample rates. 61 features were
computed for each subject, all of which were converted into
30-second epochs corresponding to 30-second sleep/wake
PSG labels [6]. Figs. 1a-1e shows an example time series of
motion and features for a health subject from the Newcastle
dataset.

1) Activity Count [6], [10]: This feature refers to the
actigraphy count obtained from the wrist watch. We com-
puted the modified activity count in z-axis data by applying
a 3-11 HZ band-pass filter and then divide the data into 128
bins between 0 and 5 g.

2) Activity Index (Al) [11]: The activity index feature,
defined in Equation 1, is computed once per second from
the variance of the three accelerometer axes:
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where 67 = 07, + 07, + 07, gives the noise-induced variance
when the accelerometer is at rest. The 10th percentile of 10-
second variances for each Michigan subject was computed,
and mean of these values was assigned to 57.

3) Signal Magnitude Area [12]: This feature is computed
from the sum of the accelerometer magnitude over the tri-
axial data and normalized by a given window length.

4) Inclination Angles [13]: These angles, which include
X-Theta, Y-Psi, and Z-Phi, represent the orientation of the
accelerometer device.

5) Z-angle [7]: We used the arm-angle change measure-
ment of the approach as a feature to infer the active or
inactive status of a subject.

6) Acceleration Magnitude [14]: After applying a 0.1
Hz highpass filter, each sampls’s vector magnitude was
calculated from the three accelerometer axes.

C. Sleep/Wake Classifier with Machine Learning

To create the sleep models, we applied feature elimination
and tested the parameters to optimize each sleep classifier.
Logistic regression (LR) and random forest (RF) models
were tested for sleep/wake classification, defining a positive
label (i.e., 1) as actual sleep and a negative label (i.e., 0) as
wake.

First, backward elimination was run with all features using
the ordinary-least-squares, retaining only features with p-
values of less than 0.01. Next, we ran recursive feature elim-
ination by maximizing the AUROC performance produced
independent optimal feature sets for the intra-validation
within the unique datasets (i.e., the Newcastle or Michigan)
using LR and RF sleep models. The differences in feature
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Fig. 1. Example of sensor data, actigraphy features, sleep annotation,

and model performance (data from Newcastle subject mecsleep57-left, a
normal sleeper). (a) Three-axis accelerometer data. (b)-(e) 6 representative
actigraphy features. (f) PSG annotation. (g) Sleep and wake prediction from
the RF model trained on all other Newcastle subjects.

sets are clearly influenced by the study cohort composition as
well as the inherent differences between learning aspects of
LR and RF models. However, the feature sets identified for
the intra-validation of a given dataset and the ML model are
retained the same for inter-validation analysis. This results
in four distinct feature sets.

Finally, the selected features for each model were used
to run 50 iterations of Monte Carlo cross-validation (70%
training and 30% testing) and leave-one-out cross-validation
[6].

For the metric to evaluate a model, we compared the PSG
annotations with the sleep/wake epochs predicted by each
model and then used the scikit-learn functions in Python
to compute the median of AUC (area under the curve),
accuracy, precision, sensitivity, F1 score, and specificity.
Median AUC values calculated on the 50-run receiver op-
erating characteristic curves were taken as the main metric
for evaluating the performance of each model.

D. Cross-validation between the Newcastle and Michigan
datasets

o Intra-dataset validation: First, 50 Monte Carlo train/test
splits were run on each dataset (70% train and 30% test,
split by subject). Next, leave-one-out cross-validation
was performed, testing individually on each subject.

« Inter-dataset validation: Models were trained on the
complete Newcastle dataset and tested individually on
the subjects of Michigan. The process was then re-
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versed, training on Michigan and testing on Newcastle
by subject.

III. RESULTS
A. Feature selection

The feature elimination procedure yielded two feature
sets for the Michigan dataset (10 features for LR and 10
for RF) and two feature sets for the Newcastle dataset (9
features for LR and 24 for RF). Time series plots of six
representative features are shown in Figs. 1b-le. Fig. 1g
presents an example of typical sleep/wake prediction from
our models. The epochs classified as “wake” coincide with
elevated feature amplitudes, indicating wristband motion.

B. Intra-dataset validation with leave-one-out and Monte
Carlo

As shown in Table I, intra-dataset training and testing
produce median values ranging from 0.736 (Monte Carlo
validation on Newcastle LR model) to 0.893 (leave-one-out
validation on Michigan RF model). The Michigan models
show consistently higher median AUC values than the New-
castle models. Within the Michigan results, leave-one-out
validation produces a ~0.04 AUC improvement over Monte
Carlo.

Within Michigan, Fig. 2 shows the individual ROC results
for each validation run are more scattered for leave-one-out
validation (Fig. 2, top row) than for Monte Carlo validation
(Fig 2., bottom row). A comparison between the LR (left
column) and RF models (right column) shows no significant
difference between median AUC results and the distributions
of the individual validation runs.

TABLE I
AUC VALUE OF INTRA-DATASET VALIDATION

Michigan Newcastle
LR RF LR RF
Leave-one-out | 0.889+0.07  0.893+0.08 0.77+£0.15  0.773+0.13
Monte Carlo 0.847+0.02  0.859+0.02 | 0.736x0.05  0.804+0.03

*median * standard deviation

TABLE I
PERFORMANCE BY INTER-DATASET VALIDATION

Test: Michigan Test: Newcastle

(Train: Newcastle) (Train: Michigan)
LR RF LR RF
AUC 0.869+0.08  0.832+0.11 | 0.764+0.14  0.756+0.15
Accuracy | 0.911+0.05 0.918+0.06 | 0.808+0.16  0.811+0.13
Precision | 0.936+£0.06  0.923+0.06 | 0.816+0.20  0.847+0.19
Sensitivity | 0.961+0.04 1+£0.01 | 0.988+0.08 0.906+0.17
F1 Score 0.952+0.03  0.957+0.03 | 0.892+0.16  0.874+0.18

*median + standard deviation

The median AUC results of Newcastle with leave-one-
out and Monte Carlo validation range between 0.736 and
0.804, notably less than the Michigan results. Leave-one-
out validation (Fig. 3, top row) again shows little differ-
ence in median AUC performance and between the LR
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Fig. 2. Validation results for models trained and tested with the Michigan
dataset: ROC curves for logistic regression sleep models (left column) and
random forest sleep models (right column) evaluated using leave-one-out
(top panels) and Monte Carlo (bottom panels) cross-validation methods.
All subjects are normal sleepers.
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Fig. 3. Validation results for models trained and tested with the Newcastle
dataset: ROC curves for logistic regression sleep models (left column) and
random forest sleep models (right column) evaluated using leave-one-out
(top panels) and Monte Carlo (bottom panels) cross-validation methods.
The dataset consists of both normal and abnormal sleepers.

and RF models. The ROC results for individual normal
and abnormal sleepers show similar distributions; the worst-
performing ROCs, occasionally dropping below the diagonal,
are typically associated with abnormally-sleeping subjects.
In contrast, the bottom row of Fig. 3 shows Monte Carlo
validation on Newcastle yields significantly better results
from the RF model (median AUC 0.804) than from the LR
model (median AUC 0.736).

C. Inter-dataset validation

Fig. 4 presents the results for models trained with New-
castle and tested on individual Michigan subjects (top row),
along with models trained on Michigan and tested with
Newcastle subjects (bottom row). The median AUC results
for the models tested on Michigan subjects (LR: 0.869
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and RF: 0.832) are significantly better than those tested
on Newcastle subjects (LR: 0.764 and RF: 0.756). The
AUC results, along with the median subject values for other
metrics, are summarized in Table II. The AUC results for
the inter-dataset validation when tested on Michigan sub-
jects (0.869 and 0.832) approximate those for intra-dataset
validation on Michigan (Table I, all Michigan values >
0.85). A similar trend is present for Newcastle data (Table
I, where most Newcastle values are < 0.8). The bottom row
of Fig. 4 suggests relatively lower performance when tested
on abnormal sleepers from Newcastle; a similar pattern is
evident from intra-dataset validation on Newcastle (Fig. 3,
top row).

As shown in Table II and Fig. 5, the accuracy, precision,
and F1 are also generally better for inter-dataset validation
with training with Newcastle and testing with Michigan. A
comparison of the LR and RF models shows only modest
differences in these metrics. The specificity (wake detection),
however, shows significant differences between the LR and
RF models. For inter-dataset testing on Michigan subjects,
the LR model has stronger specificity (0.429+0.19) than does
the RF model (0.24+0.2). The reverse is seen for testing on
Newcastle, in which LR specificity (0.219£0.18) is weaker
than then RF specificity (0.476+0.21).

IV. DISCUSSION

The study presented multi-variate actigraphy-based logis-
tic regression and random forest models for detecting sleep
and investigating the influence of sleep characteristics in the
performance of sleep detection. The results reveal stronger
performances of AUC and F1 scores from intra- and inter-
dataset cross validations in two unique sleep datasets than
those of previous reports [4], [6].

A recent publication by Sundararajan et al. [4] examines
a dataset consisting of 134 heterogeneous adult subjects
(including the Newcastle subjects). This study trains an RF
classifier with actigraphy-only features (i.e., the Z-angle,
Euclidean Norm Minus One, and activity count). While
the results of their study found an F1 score of 0.739 for
sleep/wake classification, the F1 scores computed with RF
classifiers in this study achieved higher F1 score values
(0.874 and 0.957 in Table II).

While the current sleep models based on actigraphy fea-
tures achieve high F1 scores for sleep detection, the speci-
ficity (i.e., correct detection of wake) is relatively lower (up
to 0.476). This agrees with the literature [3] highlighting the
inherent characteristics of actigraphy, overestimating sleep
while underestimating awake states.

As far as the composition of study cohorts are concerned,
the Newcastle dataset includes more diverse subjects with
70% of abnormal sleepers, while the Michigan dataset in-
cludes totally normal sleepers. This study composition sig-
nificantly influences the proportion of awake data available
for the training of sleep models. While the Michigan dataset
contains 9% of awake time, Newcastle dataset is comprised
of 32% of awake periods. Such imbalance in awake versus
sleep periods resultant of the inherent differences in cohort
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Fig. 4. Inter-dataset validation ROC curves for logistic regression (left

column) and random forest (right column) models. Each ROC curve shows
results for testing a single subject from one dataset (Newcastle or Michigan)
using a model trained with all subjects from the other dataset.
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Fig. 5. Distributions of (a) accuracy, (b) precision, (c) sensitivity, and (d)

F1 scores for the inter-dataset validation. Each distribution provides metrics
for testing individual subjects from one dataset (Newcastle or Michigan)
using a model trained with all subjects from the other dataset. The x-axis
labels indicate the testing dataset. Median values are listed in Table II.

characteristic leads to showcasing substantial differences in
both intra- and inter-dataset validation performance compar-
isons between the two datasets. At the same time, the choice
of machine learning models between LR and RF does not
produce noticeable differences in performances for a given
dataset, as shown in Tables 1 and 2.

The performance of inter-dataset validation when training
with Newcastle and testing with Michigan (Table II, AUC
up to 87%) is roughly similar to intra-dataset validation
on Michigan (Table I, AUC up to 89%). Conversely, inter-
dataset validation when training with Michigan (Table II,
AUC up to 76%) approximates the performance of intra-
dataset validation for Newcastle (Table I, AUC up to 80%). In

7533



both inter- and intra-dataset validation, we observed stronger
performance when testing on the Michigan subjects. The
awake time of the Newcastle subjects was longer than that
of most of the Michigan subjects. This difference in perfor-
mance of the models with the datasets could be attributed
to the bias of our models while identifying sleep over wake
time. Not surprisingly, these results also suggest that testing
on a population with only healthy sleepers (Michigan) yields
better results than using a test set that includes abnormal
sleepers (Newcastle). Including abnormal sleepers in the
training set, at least given the sample size available here,
does not appear to completely overcome this trend. On the
other hand, a training dataset including abnormal sleepers
(Newcastle) may have more value for creating a comprehen-
sive sleep model.

The future directions of research could further improve
the sleep models by exploring additional actigraphy-based
features, such as Euclidean Norm Minus One and Mean Am-
plitude Deviation [4], [15] that could enhance the diversity
and predictive power of actigraphy features [16]. Given the
merits of actigraphy such as inexpensiveness, convenience
and long-term battery life, sleep monitoring using actigraphy
remains a hot research topic. However, peripheral inactivity
measured by actigraphy alone is known to be not adequate
to differentiate sleep versus wakefulness, particularly in poor
sleepers [17]. Therefore, enhanced actigraphy-based sleep
features can complement to variety of physiological signals
(e.g., PPG, respiratory, and heart rate variability) that can
be simultaneously measured by the common wearable form
factors including arm band, wrist watch, or wrist band. Such
hybrid wearable sensing solutions and sleep models can
overcome many of the present challenges for convenient and
accurate sleep detection.

V. CONCLUSION

The study reveals that a diverse training dataset containing
a heterogeneous population is crucial to produce better ma-
chine learning models for sleep detection than one containing
only a homogeneous normal young population. Thus, the
multi-variate sleep models trained with datasets comprised
of heterogeneity could produce more robust and practical
algorithms for sleep detection using actigraphy and other
physiological features.
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