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Abstract— Continuous and non-invasive cardiovascular
monitoring has gained attention due to the
miniaturization of wearable devices. Particularly, wrist-worn
photoplethysmography (PPG) sensors present an alternative to
electrocardiogram recording for heart rate (HR) monitoring
as it is cheaper and non-intrusive for daily activities. Yet, the
accuracy of PPG measurements is heavily affected by motion
artifacts which are inherent to ambulatory environments. In
this paper, we propose a low-complexity LSTM-only neural
network for HR estimation from a single PPG channel during
intense physical activity. This work explored the trade-off
between model complexity and accuracy by exploring different
model dataflows, number of layers, and number of training
epochs to capture the intrinsic time-dependency between PPG
samples. The best model achieves a mean absolute error of
4.47± 3.68 bpm when evaluated on 12 IEEE SPC subjects.

Clinical relevance– This work aims to improve the quality of
HR inference from PPG signals using neural network, enabling
continuous vital signal monitoring with little interference in
daily activities from embedded monitoring devices.

I. INTRODUCTION

Heart rate (HR) estimation is a key element of wear-
able health monitoring applications. Photoplethysmography
(PPG) sensors have been widely adopted in the commercial
development of wrist-worn sensors as they can be placed
in-body extremities without interfering with the subject’s
daily activities. These PPG signals rely on pulse oximeters
composed of a light-emitting diode and a photodetector(PD)
that may operate either in transmittance or reflection mode.
The PD detects the variations of the intensity of the trans-
mitted/reflected light to capture the cardiac rhythm [1].

Despite the low cost and pervasiveness of such devices,
they are highly susceptible to motion artifacts (MA), signif-
icantly reducing the reliability of vital parameters measure-
ments [2]. Several components contribute to signal corrup-
tion by MA, like the separation between the sensor from the
skin surface and the body movements that leads to changes
in blood flow, overpowering the heartbeat spectrum. Fostered
by the IEEE Signal Processing Cup (SPC) 2015 [3], MA
attenuation from wrist-worn PPG sensors has been explored
using traditional digital signal processing and machine learn-
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Fig. 1: Motivation: state-of-the-art DNN architecture for HR estimation from
wrist PPG combines CNN and LSTM layers [5]–[7].

ing techniques. State-of-the-art works achieved satisfactory
accuracy on the SPC dataset through complex models [4].

The authors of [1] proposed a deep neural network (DNN)
that combines a convolutional neural network (CNN)-based
feature extractor along with two long short-term memory
(LSTM) layers and a dense layer to capture the temporal
dependencies on a single PPG channel captured from a
wrist-worn device. Despite the improvements proposed in
[5], [6] (Fig. 1), this DNN is highly complex with more
than 250k parameters and 20 million multiply-accumulate
(MAC) operations per inferred HR. In that sense, we propose
an exploratory study aiming for an LSTM-only network
model for low-complexity HR estimation from PPG signals
maintaining similar accuracy to the state-of-the-art. Our idea
relies on the ability of recurrent neural network-based models
to estimate output based on past inputs sequences and the
current hidden state for either univariate or multivariate
series. This can be achieved by modeling the sampled PPG
signal as a univariate time series, which can predict an HR.
We explore the model structure and hyperparameters with
a grid search to improve the generalization capability of
the model and its accuracy. We evaluate our LSTM-only
network proposal on 12 IEEE SPC subjects achieving a
mean average error (MAE) of 4.47±3.68 bpm on the best
network model. Hence, the key contribution of our paper
is the investigation of LSTM-only network architectures for
reduced complexity, i.e., fewer operations per inference.

II. MOTIVATION AND PROBLEM FORMULATION

Current research on wrist PPG has mostly focused on
mitigating the effects of motion artifacts on PPG sensors
with green LED due to their short wavelength compared to
other light sources [3]. Deep learning models are a promising
strategy to estimate HR in these applications as they achieve
comparable performance to traditional digital signal process-
ing (DSP) algorithms with fewer sensor signals [7]. In this
context, recurrent neural networks (RNN) are an effective
approach to process time-series data like PPG signals for HR
estimation. The key feature of these models is the ability to
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observe and integrate contextual information from previous
inputs and combine them with current inputs, improving the
model’s robustness to time distortions that may occur on the
input sequence. Nonetheless, vanilla RNNs suffer from the
vanishing gradient when long input sequences are considered
[8]. This issue was addressed with the proposal of LSTM
networks, which have internal memory cells and a couple
of adaptive and multiplicative gating units on the input and
output of all cells. These mechanisms control the information
flow in each timestep, effectively constraining the influence
on previous hidden states on the current predictions. These
gates, known as input (it), forget (ft), output (ot), and cell
state update (ut), and they compute the intermediary results
from the current input (xt) and the previous hidden state
(ht−1) as follows:

it = σ(Wixt + Uiht−1) (1)
ft = σ(Wfxt + Ufht−1) (2)
ot = σ(Woxo + Uoht−1) (3)

ut = tanh(Wuxt + Uuht−1) (4)
ct = ft × ct−1 + it × ut (5)
ht = ot × tanh(ct) (6)

In these equations, xt is the LSTM input, W∗ and U∗ are
weight matrices, and ht is the hidden state, which becomes
the input ht−1 on the next timestep and ct−1 is the cell state
from the previous timestep. All bias terms were omitted for
simplicity’s sake. The σ and tanh represent the sigmoid and
hyperbolic tangent non-linear functions, respectively.

Edge devices often lack computing effort and energy
availability in batteries to accomplish these tasks [9]. Hence,
optimizations on the software model can be further replicated
into custom hardware accelerators to maximize performance
with the least amount of energy. In that sense, DL solutions
more closely tied to the hardware implementation will be
preferred due to the unique hardware/software co-design
possibility to boost energy efficiency [10].

Current state-of-the-art HR estimation using deep learning
was proposed in [1] where the authors combine convolutional
layers along with LSTM layers and a final regression layer,
presenting an end-to-end framework for training and evalua-
tion without manual feature extraction. The proposed model
has 256k parameters, and it requires around 20 million opera-
tions per inferred HR. A reduced complexity implementation
of this model was proposed in [6] where binarization and
quantization techniques were explored, although the number
of operations and parameters remained constant. A similar
approach was proposed in [11] where the authors use a
single PPG channel to predict the HR and blood pressure
simultaneously. They adopt a different windowing scheme
for the input data, which reduces the model complexity when
compared to [1] even though the model predicts additional
physiological data. However, a direct accuracy comparison
is not feasible as these works target different datasets.

Our exploration adopts the IEEE SPC database as it
is the most employed dataset in the literature to evaluate

the algorithm performance. This dataset contains 5-minute
records from 22 healthy subjects with ages ranging from 18
to 58 [3]. Each record comprises two PPG channels captured
from a wrist-worn oximeter with a green LED along with a
3-channel accelerometer to measure the wrist movements.
The records also have an ECG signal captured from a chest-
worn patch used as the ground truth for HR estimation. All
signals were sampled at 125 Hz, and they were divided into
8s windows with an overlap of 6s with the adjacent windows
(sliding windows by 2s). We limited the dataset to the first
12 subjects, which executed a well-defined activity protocol
that involved walking and running on a treadmill according
to the following protocol: 1–2 km/h for 0.5 min, 6–8 km/h
for 1 min, 12–15 km/h for 1 min, 6–8 km/h for 1 min,
12–15 km/h for 1 min, and 1–2 km/h for 0.5 min. Limiting
the dataset is necessary due to the long training time and
the number of experiments executed to obtain the optimal
network structure.

III. LSTM-ONLY NETWORK PROPOSAL FOR
HEART-RATE ESTIMATION FROM WRIST PPG

Despite all the information channels on the SPC dataset,
we adopted an approach similar to [1] and limited the
network to operate with a single PPG channel with the
ground truth generated by the ECG signal to reduce the
model complexity. Hence, we search for the most suitable
model by exploring three optimization axis: (i) the dataflow
model, (ii) the number of layers, and (iii) the optimal
set of hyperparameters for network training. The last two
optimization axis will be explored in Section IV.

The LSTM networks were trained on an Nvidia Tesla K80
GPU (with cuDNN 5.10) and modeled in Lasagne 0.2dev1
[12], configured to use Theano 0.9.0 as the backend. The first
12 healthy male subjects of the SPC dataset [3] was used to
train and evaluate the network.

As we aim for a more generalized model, we adopt
the leave-one-subject-out (LOSO) training methodology [6].
This strategy removes the subject under test (SUT) from the
dataset and uses the remaining subject data as the train-
ing dataset, improving the model capability to capture the
physiological variance among subjects. The LOSO method
also ensures that there is no overlap between train and
test datasets. The models adopt a learning rate of 0.005
with a batch size of 16 samples and a logcosh function as
the loss criteria. The accuracy measurement is achieved by
computing, for each window, the absolute difference between
the ground truth HR and the predicted HR, providing the
information to compute the MAE and the standard deviation
(SDAE) for all windows.

The first optimization point relies on how the data is fed
to the network and how it will predict the output based on
current input and state. Therefore, this work explores the
LSTM-only networks in the three following dataflow models:
Model I: The first model is the sequence-to-one dataflow
where inputs are fed continuously, but HR estimation is only
generated at the last time step (see Fig. 2a). Each input is a
scalar value (S* on the figure), and the timestep is 1000 as
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Fig. 2: Explored LSTM-only network dataflows. (a) Sequence-to-one (Model I). (b) Sequence-to-sequence (Model II). (c) Hybrid approach (Model III).

each time window has 1000 samples.
Model II: The second model is based on the sequence-
to-sequence dataflow where an output is generated in each
timestep (Fig. 2b. Each input is a window (W* on the picture)
with 250 samples (equivalent to 2s of data). There is a
predicted HR for each input window, updating the hidden
state between inputs.
Model III: The third model can be regarded as the combi-
nation of the first and second models as the input sequence
consists of complete subject information because the input
vector is N windows of 250 samples each. We assume that
N is 160 as this is the maximum number of windows for a
given subject on the dataset. For records with a lower number
of windows, the last window is replicated to ensure that all
records are of the same size. Once all N windows have been
processed, the hidden state of the last LSTM layer is fed to a
dense layer with 160 neurons (1 for each window) to execute
the linear regression for the HR estimation for each window.
As it needs to process all subject’s input data before any
valid output is processed, this model has the highest latency.

IV. RESULTS AND DISCUSSIONS

This section shows the evaluation results. Firstly, we
present the training details. Then, we present the trade-off
between the number of LSTM layers versus the accuracy.

The LSTM models are trained using the strategy leave-
one-subject-out explained in [6]. LSTMs are particularly sen-
sitive to the number of training epochs. Too many iterations
during the training phase could result in over-fitting, and the
model is no longer generalized. On the opposite, insufficient
training iterations leads to bad regression accuracy. For
this exploration, we swept the number of training epochs

from 1 to 300 and observed that longer training leads to a
model too specialized whose performance is degraded when
evaluated on the test dataset. The search found that the
optimal training length is 30 epochs as it corresponds to the
minimal validation loss as longer runs led to overfitting.

In LSTM models, increasing the number of layers has
diminishing returns in terms of accuracy improvement of the
model. As more layers are stacked, the model complexity
increases, leading to difficulties in the training process. A
sweeping analysis was executed evaluating the correlation
between the MAE and the number of layers to obtain the
optimal model for HR inference.

Fig. 3a illustrates how the model accuracy is affected by
the number of stacked layers. As more layers are added,
it becomes more difficult to train the parameters, as shown
by the training loss. Since the dataset is not large enough,
it limits the efficiency of the training algorithm when the
number of parameters grows. Nonetheless, increasing the
number of layers improves the accuracy by nearly 50%,
reducing the MAE to a plateau of 4.3 bpm around four layers
in comparison with the 1-layer model, which presented an
MAE of 8.0 bpm. Although models with 3 and 4 layers have
similar performance, Fig. 3b shows that the 4-layer model
has a lower variability on the predicted output, although this
approach requires a slightly higher number of parameters.

Table I illustrates how the dataflow influences the model
accuracy and compares the proposed model with the cur-
rent state-of-the-art in HR estimation from PPG data using
deep learning algorithms. In all cases, the model evaluation
assumes the optimal number of layers/hyperparameters that
were obtained through our analysis, which is explained in
sub-section B and C. Model III presents the lowest overall

Fig. 3: Number of LSTM layers versus accuracy trade-off evaluation. (a) Impact of the number of layers on the model accuracy. (b) Influence of number
of layers on predicted HR for IEEE SPC subject 5.
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TABLE I: Accuracy (MAE±SDAE) results comparison w.r.t the literature.

PPG 1CorNET Our LSTM-only network proposals
Subject [5] Model I Model II Model III

1 3.76 ± 3.03 21.47±27.76 12.90±15.43 6.11±4.22
2 5.82 ± 10.96 17.63±21.47 10.65±12.65 2.87±2.32
3 1.47 ± 2.10 15.90±20.77 9.59±9.79 4.33±3.21
4 1.89 ± 5.77 13.62±20.03 4.77±6.15 3.84±3.21
5 1.04 ± 1.52 8.25±9.75 4.43±3.45 3.01±2.11
6 3.43 ± 11.85 14.04±20.19 8.07±10.57 3.83±3.40
7 1.08 ± 2.45 9.45±12.62 5.24±6.27 2.64±1.78
8 1.85 ± 6.96 17.21±17.98 12.88±16.27 11.42±10.20
9 1.74 ± 7.01 14.61±17.51 5.55±5.70 2.92±2.38
10 8.77 ± 10.10 15.32±18.58 5.56±6.59 6.88±6.44
11 3.39 ± 4.13 13.45±12.76 5.38±7.07 2.68±2.40
12 3.68 ± 6.31 17.67±15.63 5.25±6.17 3.14±2.55

Average 3.16 ± 6.02 14.88±17.92 7.52±8.84 4.47±3.68
1CorNET is the DNN architecture combining both CNN and LSTM.
*PP-Net is not considered as it is evaluated on a different dataset.
As reference, the output is constrained to the 60-180 bpm interval.

MAE, but it is more suited for off-line processing as it needs
to observe all input windows before any HR estimation.
Real-time operation, required for edge devices, can only be
achieved with models I and II, although the latter is preferred
due to its considerably lower MAE.

Our LSTM-only network Model III proposal shows an
accuracy penalty of 1.3 bpm compared to state-of-the-art
works, although it has a much less complex model since
it has 10× fewer parameters. Since the output is constrained
to the 60-180 bpm interval, the Model III MAE has a relative
error of up to 6.7% in the worst case.

The complexity advantage in terms of the complexity
of LSTM-only networks can be verified in Table II. State-
of-the-art deep learning-based implementations that employ
a CNN+LSTM strategy need 4-10× more parameters per
model and require up to 1000× more MAC operations
per inferred output. Although the LSTM dataflow requires
non-linear functions and feedback paths, it offers a viable
alternative to other hybrid or purely feed-forward networks.

TABLE II: Complexity results comparison w.r.t the literature.
Model Trainable Parameters MACs †Latency (samples)

CorNET [1] 256k 20.2M 1000
PP-Net [11] 124k 9.5M 250

Our Model I 7k 5.4M 1000
Our Model II 23k 17.4k 250
Our Model III 26k 3.7M 40k
†Minimum amount of processed input samples until first HR estimation.

Figure 4 shows the network performance for best and
worst records given by subjects 11 and 9, respectively. In
both cases, the ECG-based HR recording presented some

extreme, short-period variations that the model could not
capture, although most of these variations could be due to
bad contact between the ECG patch and subject skin.

V. CONCLUSION

In this paper, an LSTM-only neural network for low-
complexity HR estimation from wrist PPG is presented.
Our exploratory approach evaluates the complexity-accuracy
trade-off in this type of network. Compared to the state-of-
the-art deep learning-based implementations, our proposal
leads to a simpler model with 4-10× fewer parameters and up
to 1000× fewer MACs per estimated output while attaining
a similar prediction accuracy with an average error 8.7%
lower than other implementations. Binary LSTMs and their
effective RTL implementation have been reported in [5],
[6]. This knowledge will be combined with our LSTM-only
network to design a custom hardware accelerator.
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