
  

 

Abstract— Airborne infectious diseases such as COVID-19 

spread when healthy people are in close proximity to infected 

people. Technology-assisted methods to detect proximity in 

order to alert people are needed. In this work we systematically 

investigating Machine Learning (ML) methods to detect 

proximity by analyzing data gathered from smartphones’ built-

in Bluetooth, accelerometer and gyroscope sensors. We 

extracted 20 statistical features from raw sensor data, which 

were then classified (< 6ft or not) and regressed (distance 

estimate) using ML algorithms.  We found that elliptical filtering 

of accelerometer and gyroscope sensors signal improved the 

performance of ML regression. The most predictive features 

were z-axis mean and fourth momentum for the accelerometer 

sensors, z-axis mean y-axis mean for the gyroscope sensor, and 

advertiser time and mean RSSI for Bluetooth radio. After 

rigorous evaluation of the performance of 19 ML classification 

and regression methods, we found that ensemble (boosted and 

bagged tree) methods and regression trees ML algorithms 

performed best when using data from a combination of 

Bluetooth radio, accelerometer and the gyroscope. We were able 

to classify proximity (< 6ft or not) with 100% accuracy using the 

accelerometer sensor and with 62%-97% accuracy with the 

Bluetooth radio.   

I. INTRODUCTION 

    COVID-19 is a highly infectious airborne 

transmittable disease that currently has over 150 

million people infected with a total of 3.2 million 

deaths globally till date, costing over 28 trillion 

dollars to manage.  The risk of airborne infectious 

diseases such as COVID-19 increases when healthy 

people are within 6 feet of infected people for 

longer than 15 minutes [25]. This has led to 

research interest in to estimate the distance between 

smartphone users by analyzing data from built in 

sensors such as Bluetooth, accelerometer and 

gyroscope.  

    Sensing social interactions has been explored in 

prior work. The main objective of such research is 

to track human mobility and epidemic spreading 

[2], human behavior in organization settings and 

how it shapes individuals and organizations [3], and 

the propagation of information [4]. Researchers in 

the past experimented using combination of various 

sensors to detect social interactions or estimate 

 
 

proximity including the accelerometer [5, 6, 7, 3], 

gyroscope [5, 6], magnetometer [8], microphone [6, 

3], GPS [7], Wi-Fi [9, 8, 10] and Bluetooth [11, 9, 

5, 12, 13, 3] radio.  Some distance estimation 

approaches utilized mobile Received Signal 

Strength Information (RSSI) [11, 9, 5, 12] and 

Time Difference of Arrival (TDoA) [14]. Data 

analyses has utilized both classical proximity 

estimation techniques such as Path Loss Model 

(PLM), as well as ML algorithms such as: 

AdaBoost [11], XGBoost, Linear Regression, 

SVM, and Random Forest [5]. Some prior work 

focused on recognizing the user context [6]. Much 

of prior work was pre-COVID and focused on 

broader goals such as detecting social interactions. 

We focus on COVID-19 proximity estimation and 

classification.  

In this paper, we investigate how accurately the 

proximity of two smartphones can be estimated 

using data from their built-in accelerometer, 

gyroscope sensors and Bluetooth radio. We 

analyzed these data using ML algorithms to 

estimate range. A novel aspect of our work is that 

we are the first to explore whether context-specific 

ML models are more accurate than general ones. 

Specifically, we explore whether first recognizing 

the user’s context such as whether the user is 

indoors or outdoors, room size, user’s pose and 

location of the transmitting device on the body and 

providing this context information as an input 

feature improves ML proximity estimation. We 

found that adding user context information as a 

feature improved the accuracy of ML regression 

(distance estimate) but not ML proximity 

classification (< 6ft or not). 

    Range estimation using Bluetooth radio is 

challenging because the RSSI varies continually 

due to multipath fading, the transmission 

Machine Learning Estimation of COVID-19 Social Distance using 

Smartphone Sensor Data  

Oleksandr Semenov, Emmanuel Agu, Member, IEEE, Kaveh Pahlavan Life Fellow, IEEE 

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 4452



  

environment, room size, the presence of 

obstructions and the number of people in the room.  

II. APPROACH 

    TABLE 1. SUMMARY OF THE MITRE RANGE AND ANGLE 

(UNSTRUCTURED) DATASET  

TABLE 2. STATISTICAL FEATURES COMPUTED FROM 
ACCELEROMETER, GYROSCOPE, AND BLUETOOTH DATA   

   Smartphone proximity dataset: In our 

experiments, we utilized the publicly available 

PACT Mitre Range and Angle (Unstructured) 

(MRAU) dataset [1] to develop our ML proximity 

classification and regression models [1]. Table 1 

summarizes the data in the MRAU dataset. The 

RSSI signal measurements were taken at 

increments of 2 feet from 2 to 16 feet between 

transmitting and receiving devices. However, not 

all subjects recorded RSSI signal strength at all 

distances. The data was collected for 60 seconds at 

each distance at ~4Hz frequency for accelerometer 

and gyroscope sensors and ~10Hz for Bluetooth. 

The main steps in our machine learning pipeline are 

shown in figure 1. First, the raw sensor signals were 

filtered using a low-pass filter. Next various 

statistical features that prior work has found to be 

predictive were extracted. These features including 

the user’s context were then classified or regressed 

to predict user proximity/range using ML methods. 

    Signal filtering: We evaluated the utility of 5 

filter types for ML range estimation: Butterworth 

[16], Chebyshev [16], Elliptical [16], Median [17], 

moving average and moving average with 

overlapping windows. In order to determine 

frequencies of interest, the FFT of the sensor signal 

were computed. Most of the signal energy were 

found to be concentrated in the 0-0.2Hz, 0.3Hz-

0.5Hz, and 1.3Hz-1.5Hz bands. The Kaiser window 

FIR filter was used to construct a band-pass filter to 

test combinations of each of the three bands.    

 
 

Figure 1.  Overview of our ML proximity regression pipeline using 
Accelerometer, Gyroscope, and Bluetooth data.  

Gyroscope Context 

x-axis y-axis z-axis Indoor Sitting 

Accelerometer Outdoor Standing 

x-axis y-axis z-axis Large Room 
Hold to Right 

Ear 

Bluetooth Medium Room 
Front Pants 

Pocket 

RSSI TSSI 
Advertiser 
Timestamp 

Small Room In Hand 

Response 

  

Center 

Congested 
In Purse 

Range Angle 

Center Open 
Rear Pants 
Pocket 

Near Wall 

Congested 
Shirt Pocket 

Near Wall Open   

Sensor Feature Formula Ref 
A, G Magnitude 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = √𝑥2 + 𝑦2 + 𝑧2 - 

A, G, B Mean µ =  
1

𝑁
∑ 𝑋𝑖

𝑁
𝑖=1 n  - 

A, G, B Standard 

Deviation 𝑆 = √
1

𝑁−1
∑ |𝑋𝑖 − 𝜇|2𝑁

𝑖=1   
- 

A, G, B Third and Fourth 

Momentum 
𝑚𝑘 =

1

𝑁
∑ (𝑥𝑖 − 𝜇)𝑘𝑁

𝑖=1  , k=3, 4  - 

A, G, B Percentile  The score at k percentile for k = 

25, 50, 75 
- 

A, G, B Value Entropy 𝐻𝑥(𝑦) = −𝐾 ∑ 𝑝𝑖 log 𝑝𝑖
𝑁
𝑖=1   15 

A, G Time Entropy  𝐻𝑥(𝑦) = −𝐾 ∑ |𝑚𝑖| log(|𝑚𝑖|)𝑁
𝑖=1   15 

A, G, B Autocorrelation  𝑟𝑘 =
𝑐𝑘

𝑐0
   18 

A, G Autocovariance  𝐾𝑋(𝑡, 𝑠) = 𝑐𝑜𝑣[𝑋(𝑡), 𝑋(𝑠)] =
𝐸{[𝑋(𝑡) − 𝜇𝑋(𝑡)][𝑋(𝑠) −
𝜇𝑋(𝑠)]}  

19 

B Delta 𝑑𝑒𝑙𝑡𝑎 =  𝑅𝑆𝑆 − 𝑇𝑆𝑆  - 
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    Feature extraction: Table 2 summarizes 

statistical features we computed from 

accelerometer, gyroscope, and Bluetooth data. 

Additionally, for accelerometer and gyroscope 

sensors, mean and standard deviation for each axis 

were computed as well as autocorrelation between 

xy, xz, and yz axes. A total of 20 features were 

extracted for each sensor. The advertiser time 

feature was also extracted for Bluetooth, yielding a 

total of 14 features for Bluetooth radio.  
TABLE 3: EVALUATION METRICS 

TABLE 4. F1 AND BA CLASSIFIER PERFORMANCE 

In addition to statistical features, we employed 

classification models to estimate the environment 

in which measurements were taken. There were 

five types of environment labels: 1) Indoors or 

outdoors, 2) Room size:  large, medium or small 

room. 3) Transmitting device’s location in the 

room: center congested, center open, near wall 

congested, and near wall 4) Pose of the test subject: 

sitting or standing, and 5) Phone placement: held to 

right ear, front pants pocket, in hand, in purse, rear 

pants pocket, or shirt pocket.  

    All the features were computed over windows of 

10 samples of continuously sampled sensors’ 

signals. Before training regression classifier on the 

dataset, the data was normalized using one of two 

methods: 1) z-score �̅� =  
𝑋−𝜇

𝜎
 or 2) min-max 

normalization �̅� =  
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥− 𝑋𝑚𝑖𝑛
 . 

    Machine learning algorithms: We evaluated 

linear regression [20, 22], regression trees [21], 

Support Vector Machines (SVM) [23], ensemble 

methods [20], and Gaussian Process Regression 

(GPR) [24]. We validated the results of regression 

models using 5-fold cross validation technique to 

avoid overfitting and to robustly determine the 

optimal ML model. The best performing model was 

also evaluated using leave-one-out cross-validation 

with subject level splitting. 

    Evaluation metrics: Table 3 summarizes 

evaluation metrics used to measure performance of 

regression and classification models. 

III. EVALUATION AND RESULTS 

A.  Signal filtering 

    We found that the Elliptical filter of the 9th 

order performed best. Various cutoff frequencies 

ranging from 0.1 Hz to 1.8 Hz were tested. The 

highest regression R2 for the accelerometer was 

0.63 at cut-off frequency of 0.2 Hz and 0.27 for 

the gyroscope at a cut-off frequency of 0.1 Hz. 

This was a significant improvement over the best 

R2 achieved using unfiltered data: 0.31 for the 

accelerometer and 0.21 for the gyroscope. 

B. Classification performance on various labels 

    Table 4 summarizes the results of classifying 

various labels in the MRAU dataset. Overall, 

Bluetooth radio had very high accuracy for 

recognizing all the context variables with BA 

and F1 values of 0.99 for all. Accelerometer data 

yielded good accuracy for recognizing when the 

subject was sitting or standing and also in detecting 

the size of the room. Figure 2 shows the importance 

of each feature for various range estimation tasks. 

Feature importance calculated as difference in the 

node risk between parent and children’s nodes 

Mean Squared Error (MSE)   MSE =  
1

𝑛
∑ (𝑌𝑖 −  𝑌�̂�)

2𝑛
𝑖=1  

Root-Mean-Square Error (RMSE)  
 RMSE =  √

∑ (𝑌𝑖− 𝑌�̂�)2𝑛
𝑖=1

𝑛

2

 

R2 
 R2 =

∑ (𝑌𝑖− 𝑌�̂�)2𝑛
𝑖=1

∑ (𝑌𝑖− 𝜇)2𝑛
𝑖=1

 

Mean Absolute Error (MAE)   MAE =
∑ |𝑌�̂�− 𝑌𝑖 |𝑛

𝑖=1

𝑛
 

Balanced Accuracy (BA)  BA =  
𝑇𝑃𝑅 + 𝑇𝑁𝑅

2
 

F1  

𝐹1

=  
2 ∗ 𝑇𝑃𝑅 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑇𝑃𝑅 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

True Positive Rate (TPR)    TPR =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

True Negative Rate (TNR)    TNR =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

Precision  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Classification 

Model 

Accuracy  

Accelerometer Gyroscope Bluetooth 

F1 BA F1 BA F1 BA 

Indoor 0.8512 0.9014 0.7595 0.8371 0.9981 0.9991 

Outdoor 0.7812 0.8626 0.4939 0.7098 0.9999 1 

Large Room 0.7946 0.8708 0.7152 0.8465 0.9971 0.9988 

Medium Room 0.9035 0.9041 0.7793 0.7843 0.9992 0.9992 

Small Room 0.8466 0.9005 0.5839 0.74 0.9999 1 

Center 

Congested 
0.5835 0.7511 0.1614 0.59 0.9936 0.9999 

Center Open 0.8511 0.8921 0.6514 0.7466 0.9995 0.9995 

Near Wall 
Congested 

0.8657 0.8993 0.7512 0.8113 0.9999 1 

Near Wall Open 0.9035 0.9309 0.7357 0.8026 0.9999 0.9999 

Sitting 0.8815 0.8987 0.7401 0.782 0.9979 0.998 

Standing 0.9151 0.8987 0.8195 0.782 0.9979 0.998 

Hold to Right 

Ear 
0.8546 0.9033 0.7712 0.8362 0.9992 0.9996 

Front Pants 

Pocket 
0.635 0.7677 0.3487 0.6125 0.9943 0.9975 

In Hand 0.7518 0.8048 0.5636 0.6611 0.9929 0.9929 

In Purse 0.6756 0.7956 0.2771 0.5835 0.9796 0.992 

Rear Pants 

Pocket 
0.6292 0.7419 0.456 0.6573 0.985 0.9895 

Shirt Pocket 0.5803 0.7863 0.1325 0.5656 0.989 0.9987 

Average: 0.7826 0.8535 0.573 0.7264 0.9955 0.9978 
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𝑅1− 𝑅2− 𝑅3

𝑁𝑏𝑟𝑎𝑛𝑐ℎ
 where risk is defined as a node error. We 

discovered that including additional features 

improved the ML model’s performance of the 

model when validated using 5-fold cross-

validation. 
TABLE 5. RESULTS OF AN OPTIMAL CLASSIFIER SEARCH 

TABLE 6. REGRESSION MODEL RESULTS WITH 5-FOLD CROSS-

VALIDATION 

TABLE 7. REGRESSION MODEL RESULTS WITH LEAVE-ONE-OUT 

CROSS-VALIDATION 

TABLE 8. REGRESSION MODEL RESULTS WITH SUBJECT LEVEL 

SPLITTING CROSS-VALIDATION 

C. Best performing ML classification algorithm 

    Table 5 summarizes compares the performance 

of various machine learning classification 

algorithms. Regression Trees performed best with 

Bluetooth sensor data, and Bagged Trees 

performed best on the accelerometer and gyroscope 

data. The highest ML regression fit was observed 

with Bluetooth sensor.   

D. Cross-validation 

     In addition to 5-fold cross validation technique 

we validated performance of our model using 

leave-one-out cross validation, and subject level 

splitting. For leave-one-out cross-validation we 

split data into training and test sets by subject, 

where one subject’s data was put in the test set and 

all others in the training set. This validation 

approach most closely mimics real world 

environments. For subject level cross-validation we 

used a 70/30 train/test split (12 subjects in training 

set, 5 subjects in test set). Tables 6 through 8 show 

the results of cross-validation. 

IV. DISCUSSION 

The key findings of our study include that:  

1) Elliptical filtering of the accelerometer and 

gyroscope signals improves the regression R2 

by 0.32 and 0.06 using accelerometer and 

gyroscope data respectively. 

 
Figure 2.  Predictor Importance 

2) Ensemble ML classification methods (boosted 

and bagged trees) classified < 6ft or not 

between with 100% accuracy using 

accelerometer sensor data. 

Model  Method 
RMSE score 

A G B 

Linear Linear 4.4223 4.6607 4.7696 

  Interactions Linear 4.6399 7.938 5.82E8 

  Robust Linear 4.4308 4.6633 12.719 

  Stepwise Linear 3.9749 4.6461 7.0528 

Tree Fine Tree 3.5293 5.1107 0.2289 

  Medium Tree 3.3486 4.7299 0.3087 

  Coarse Tree 3.4537 4.4817 0.4765 

SVM Linear SVM 4.528 4.7148 4.6823 

  Quadratic SVM 4.2603 7.1004 19.766 

  Cubic SVM 30.453 105.29 26940 

  Fine Gaussian SVM 3.234 4.2502 3.7406 

  Medium Gaussian SVM 3.3354 4.2912 4.2992 

  Coarse Gaussian SVM 4.2538 4.5428 4.5327 

Ensemble Boosted Trees 3.5044 4.2923 2.1337 

  Bagged Trees 2.837 4.0989 0.5902 

GPR Squared Exponential  3.0078 4.1947 3.6705 

  Matern 5/2  2.9709 4.1685 3.5152 

  Exponential 2.9223 4.1153 2.0701 

  Rational Quadratic 2.9249 4.1399 2.1051 

  
Accelerometer Gyroscope Bluetooth 

Handcrafted 

Features 

All 

Features 

Handcrafted 

Features 

All 

Features 

Handcrafted 

Features 

All 

Features 

MSE 7.1917 7.4384 15.9857 16.2524 0.0409 0.0485 

RMSE 2.6817 2.7273 3.9982 4.0314 0.2023 0.2202 

R2 0.6874 0.6767 0.3051 0.2935 0.9983 0.998 

MAE 1.8938 1.9426 3.2899 3.3445 0.0112 0.0122 

  
Accelerometer Gyroscope Bluetooth 

Handcrafted 

Features 

All 

Features 

Handcrafted 

Features 

All 

Features 

Handcrafted 

Features 

All 

Features 

MSE 43.8925 43.2142 39.2562 39.0704 33.2625 12.9921 

RMSE 6.6251 6.5738 6.2655 6.2506 5.7674 3.6045 

R2 -0.2007 -0.1822 -0.0739 -0.0688 0.0901 0.6446 

MAE 5.9464 5.9096 5.7377 5.7527 4.5635 2.2201 

  
Accelerometer Gyroscope Bluetooth 

Handcrafted 

Features 

All 

Features 

Handcrafted 

Features 

All 

Features 

Handcrafted 

Features 

All 

Features 

MSE 11.7313 11.1554 24.4948 23.3507 35.929 41.4525 

RMSE 3.4251 3.34 4.9492 4.8323 5.9941 6.4384 

R2 0.5098 0.5339 -0.0235 0.0243 -0.5012 -0.732 

MAE 2.8614 2.7524 4.3665 4.2637 4.5213 4.8695 
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3) Regression tree methods to estimate the actual 

distance between users when utilizing 

Bluetooth data, achieving an R2 between 0.64 

to 0.99.  

4) The most important features were z-axis mean 

and fourth momentum for the accelerometer, z-

axis mean and y-axis mean for the gyroscope 

sensor, and advertiser time and mean RSSI for 

Bluetooth. 

5) Recognizing user context improved the 

performance of range regression but not 

classification. 

    Even though performance of the regressor 

trained on the Bluetooth radio data was as high as 

0.99 F1 score when validated with 5-fold cross-

validation, performance of the regressor dropped 

significantly when validated using subject level 

splitting. The R2 of the best performing ML 

regression model using Bluetooth reduced by 0.35 

R2, and by 0.49 and 0.22 when using accelerometer 

and gyroscope data respectively. We believe that 

accelerometer and gyroscope are valuable sensors 

when estimating distance since these sensors have 

information about human motion and those can 

help identify pose and where the phone is on human 

body. We observed that adding context information 

as an input feature to the machine learning model 

improved regression model performance but not on 

classification models validated either using 5-fold 

cross-validation or with leave-one-out cross-

validation. But context features helped during 

validation.  
TABLE 9. ACCURACY OF ESTIMATION IF SUBJECTS ARE CLOSER 
THAN 6 FEET 

 

     

 

 

 

 

 

 

 

    We believe that the reduction in regression 

model performance was due to inadequate training 

data. Figure 3 shows true the predicted vs actual 

when validated using leave-one-out cross 

validation. Accelerometer and gyroscope data have 

a high variance, which can be improved by training 

the regression model on more data. In contrast, 

Bluetooth regressor had both high variance and 

bias. Thus, adding more diverse Bluetooth data 

could improve regression performance. Overall, the 

approach presented in this paper is capable of 

detecting whether two subjects are within 6 feet of 

each other with 100% accuracy when using 

accelerometer sensor data.  Table 9 shows the 

classification results for all sensors with leave-one-

out cross-validation techniques. 

 
Figure 3. Predicted versus actual distance with leave-one-out cross-validation 

V. CONCLUSION 

    In this paper we have presented research that 

demonstrates that accurate range estimation with 

accelerometer, gyroscope sensors and Bluetooth 

radio are possible with high accuracy in some cases 

considered. We found that ensemble ML models 

worked best with accelerometer and gyroscope 

sensors data, while regression trees performed best 

with Bluetooth radio data. We found that Elliptical 

low-pass filter of 9th order with cut-off frequency of 

0.2 Hz for accelerometer and 0.1 Hz for gyroscope 

performed best. Z-axis mean and fourth momentum 

were the most important features in ML model 

developed for accelerometer sensor, z-axis mean y-

axis mean worked best for gyroscope sensor, and 

advertiser time and mean RSSI worked best with 

Bluetooth radio. In addition to handcrafted features, 

this paper showed that adding context to predictor 

matrix could improve regression model 

performance. Our classification model was able to 

detect context in which measurements took place 

with an average BA of 0.85 using accelerometer 

sensor, 0.73 using gyroscope sensor, and 0.99 with 

Bluetooth radio. Finally, we presented results of an 

30/70 Subject Level Splitting 

  Accelerometer Gyroscope Bluetooth 

F1 0.9999 0.8452 0.5782 

BA 1 0.5045 0.6238 

Leave-one-out  

  Accelerometer Gyroscope Bluetooth  

F1 0.9999 0.6666 0.9726 

BA 1 0.5 0.9722 
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ML classification model trained on accelerometer 

data that achieved 100% accuracy estimating if to 

subjects are closer than 6 feet. 
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