
  

 

Abstract— Brain-Machine Interfaces (BMIs) convert 

paralyzed people’s neural signals into the command of the 

neuro-prosthesis. During the subject’s brain control (BC) 

process, the neural patterns might change across time, making it 

crucial and challenging for the decoder to co-adapt with the 

dynamic neural patterns. Kalman Filter (KF) is commonly used 

for continuous control in BC. However, if the neural patterns 

become quite different compared with the training data, KF 

needs a re-calibration session to maintain its performance. On 

the other hand, Reinforcement Learning (RL) has the advantage 

of adaptive updating by the reward signal. But it is not very 

suitable for generating continuous motor states in BC due to the 

discrete action selection. In this paper, we propose a 

reinforcement learning-based Kalman filter. We maintain the 

state transition model of KF for a continuous motor state 

prediction. At the same time, we use RL to generate the action 

from the corresponding neural pattern, which is then used as a 

correction for the state prediction. The RL’s parameters are 

continuously adjusted by the reward signal in BC. In this way, 

we could achieve a continuous motor state prediction when the 

neural patterns have drifted across time. The proposed 

algorithm is tested on a simulated rat lever-pressing experiment, 

where the rat’s neural patterns have drifted across days. 

Compared with pure KF without re-calibration, our algorithm 

could follow the neural pattern drift in an online fashion and 

maintain good performance. 

 
Clinical Relevance— The proposed method bridges the gap 

between the online parameter adaptation and the continuous 

control of the neuro-prosthesis. It is promising to be used in 

adaptive brain control applications during clinical usage. 

I. INTRODUCTION 

Brain-Machine Interfaces (BMIs) are designed to help 
disabled people restore their motor functions [1]. The decoder 
in BMI could translate the subject’s neural signal into the 
movement of the prosthesis. The prosthesis could fulfill the 
subject’s movement intention as a replacement for the real 
limb. In this way, the subject could Brain Control (BC) the 
neuro-prosthesis with BMI. 

During the BC process, the neural patterns of the subject 
might be different across time [2]–[4]. One of the typical 
phenomena is the change of the neural tuning curve. The 
tuning curve of a neuron is the average firing rate at each motor 
state of the prosthesis. When the tuning curve becomes 
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different, the decoder needs to capture the change, otherwise 
the performance would drop. Kalman Filter (KF) is one of the 
commonly used tools that translates the brain signals into the 
motor states, which exhibits good performance for continuous 
motor state prediction in many BMI scenarios [5]–[7]. 
However, when the neural patterns drift from the training data, 
KF cannot maintain good performance. It needs a re-
calibration session to collect the newest neural data to re-train 
parameters, which is time-consuming. 

Reinforcement Learning (RL) [8]–[11] is an alternative BC 
algorithm in BMI. It translates neural patterns to motor states 
and can be adapted in an online fashion. If the action drives the 
prosthesis closer to the target, the neural-action mapping is 
reinforced by the reward signal. Otherwise, the mapping is 
punished. The reward signal could be generated continuously 
during BC so that the RL model could adaptively update its 
parameters to follow the change in the neural patterns. 
However, one of the drawbacks of RL is that the generated 
action is discrete, which is not very suitable for continuous BC. 

In this paper, we propose a reinforcement learning-based 
Kalman filter. We keep the same state transition function as 
KF to inherit the advantage of the continuous state estimation. 
At the same time, based on the current neural patterns, we use 
RL to predict the corresponding action. The action is then used 
as an adjustment for the posterior motor state estimation. 
During the BC process, the RL’s parameters are adaptively 
changed according to the reward signal. In this way, we could 
have a timely updated RL model to adjust the final motor state 
prediction, which could potentially follow the neural pattern 
drift during BC. 

We generate a simulated experiment where the rat 
performs a lever-pressing task. During the experiment, the 
rat’s neural pattern has drifted across days. We tested our 
proposed algorithm and pure KF on the simulation data to see 
if our algorithm can follow the change of neural patterns across 
days. The rest of the paper is organized as follows. Section II 
provides the mathematical details for Kalman Filter, the 
adopted RL algorithm, and the proposed algorithm. Section III 
presents the simulation setup and results. Finally, the 
conclusion is given in section IV. 
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II. ALGORITHM 

The overall structure of the proposed algorithm is shown 
in Fig. 1, which is a state-observation model. 𝑥𝑡 represents the 
actuator’s states (e.g. cursor’s position). For each time step, we 
have an initial estimation of the current state based on the 
historical state as shown in the first row. In the last row, 𝑧𝑡 
represents the corresponding neural firing pattern (observation) 
from the subject. When the actuator’s state changes, the neural 
firing will change accordingly. The neural firing is translated 
to the motor state through the reinforcement learning model, 
which is denoted in the middle row. The parameters of the RL 
model are adaptively changed according to the reward signal 
𝑟𝑡 at each time step so that it could follow the neural pattern 
drift across time. Finally, by combining the prior state 
estimation and the posterior state estimation from the RL 
model, we could have an adaptive and continuous prediction 
about the motor state. In the following sub-sections, we will 
introduce KF and the adopted RL separately. And our 
proposed algorithm is introduced in the final sub-section. 

 

Figure 1.  The overall structure of the proposed algorithm 

A. State Model 

In the state model, we inherit the state transition function 
of KF. At the current time step 𝑡, we denote the motor state as 
a vector 𝑥𝑡 ∈ 𝑅𝐷𝑥×1, where 𝐷𝑥 is the dimension of the state. 
The state model is shown as follows 

 𝑥𝑡 = 𝐹𝑥𝑡−1 + 𝑞  1

𝐹  is the state transition matrix. 𝑞  is the noise of the state 
transition model. We assume that 𝑞 is Gaussian white noise 
with zero mean, and its covariance matrix is 𝑄. We denote the 
covariance matrix of the motor state as 𝑃𝑡. The prior update for 
the state model is shown as follows 

 𝑥𝑡|𝑡−1 = 𝐹𝑥𝑡−1|𝑡−1  2

 𝑃𝑡|𝑡−1 = 𝐹𝑃𝑡−1|𝑡−1𝐹𝑇 + 𝑄 3

𝑥𝑡−1|𝑡−1 and 𝑃𝑡−1|𝑡−1 are the posterior estimations of the mean 

and covariance of the motor state at time 𝑡 − 1 respectively. 

B. Reinforcement Learning Model 

In the observation model, we adopt Attention-Gated 
Reinforcement Learning (AGREL) [12] as the RL scheme. 
AGREL can efficiently explore the mapping between the 
neural pattern and the actuator’s state. It employs a three-layer 

neural network structure. The input layer has 𝐷𝑧 nodes, where 
𝐷𝑧  is the total number of neurons. The hidden layer has 𝐻 
nodes with the sigmoid activation function. The output layer 
has 𝑁 nodes which represent the possible actions for the BMI 
actuator. The final action 𝑎𝑡 is selected probabilistically by the 
softmax policy based on the action value. The motor state after 
the action selection is denoted as 𝑔𝑡(𝑧𝑡). If the action drives 
the motor state closer to the target, a reward 𝑟𝑡 = 1 will be 
given to the algorithm, and 𝑟𝑡 = 0  otherwise. The reward 
signal is then used to update the weights that connect to the 
chosen action. More details of AGREL could be found in [12]. 

C. Reinforcement Learning-based Kalman Filter 

In this sub-section, we will show our proposed method that 
combines the observation mode (AGREL) into the state model. 
Based on the non-linear neural-state mapping 𝑔𝑡()  from 
AGREL, the observation function is defined in the following 

 𝑔𝑡(𝑧𝑡) = 𝑥𝑡 + 𝑝.  4

𝑝 is the noise of the observation model. We assume that 𝑝 is 
Gaussian white noise with zero mean, and its covariance 
matrix is 𝑅. The posterior update equations are shown in the 
following 

 𝐾 = 𝑃𝑡|𝑡−1(𝑃𝑡|𝑡−1 + 𝑅)
−1

 5

 𝑥𝑡|𝑡 = 𝑥𝑡|𝑡−1 + 𝐾(𝑔𝑡(𝑧𝑡) − 𝑥𝑡|𝑡−1) 6

 𝑃𝑡|𝑡 = (𝐼 − 𝐾)𝑃𝑡|𝑡−1 7

where 𝐼 is the identity matrix. 

The proposed algorithm works as follows. First, we need to 

set an initial value for the state (𝑥0 and 𝑃0). For each time step, 

we calculate the prior motor state through (2-3) and the 

posterior motor state through (5-7). By comparing the 

distance from the current state to the target, we can get the 

reward signal 𝑟𝑡 . The reward signal will be then used to 

update the parameters of AGREL so that 𝑔𝑡() will change 

accordingly. In this way, our proposed algorithm will have the 

potential to follow the neural pattern changes during the 

continuous BC process in BMI. 

III. SIMULATION 

In this section, we test our algorithm on a simulated 
experiment, where the rat is performing a lever-pressing task. 
The rat’s neural firing pattern will be different across days. We 
compare our algorithm with Kalman filter to demonstrate that 
our algorithm could adaptively follow the neural firing 
changes without re-calibration sessions. 
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A. Simulation Setup 

 

Figure 2.  The illustration of the simulated rat lever-pressing task. (a) The 
physical movement trajectory for the rat. (b) The converted motor state over 

time. 

The simulated lever-pressing task for rats is shown in Fig. 
2. In Fig. 2(a), the rat needs to wait at the starting position. 
When the rat hears the audio cue indicating that the trial starts, 
the rat needs to get close to the lever, press, and hold it for a 
period of time. Then the rat will come back to the starting 
position to get the reward. After a pre-defined inter-trial time, 
another audio cue will be given and the next trial starts. In Fig. 
2(b), the rat’s physical trajectory is translated into a one-
dimensional motor state 𝑥𝑡 ∈ 𝑅𝐷𝑥×1 (𝐷𝑥 = 1) . At the 
beginning of the trial, we assume that the motor state is around 
0. We denote this stage as the rest stage. When the rat is 
approaching the lever, the motor state is rising from 0 to 1 as 
shown by the red curve. During the holding period on the lever, 
the motor state is maintained at around 1. We denote this stage 
as the press stage. When the trial is successful and the rat 
comes back to get the reward, the motor state goes from 1 to 0 
as shown by the blue curve. 

Based on the trajectory of the motor state, we have 
generated 4 simulated neurons with different tuning properties. 
We choose the following tuning function in [13] to simulate 
the neural firing rate 𝜆 for each neuron 

  𝜆 = 𝑒−1+𝛼𝑥𝑡+𝛽𝑣𝑥𝑡 + 𝜖. 8

𝛼 is the tuning parameter related to the motor state 𝑥𝑡. 𝛽 is the 
tuning parameter related to the velocity 𝑣𝑥𝑡

 of the motor state. 

𝜖  is the zero-mean Gaussian noise 𝜖 ∈ 𝒩(0,0.001) . The 
detailed parameters of each simulated neuron are shown in 
Table I.  

Based on the tuning function, we generated the spike of 
each neuron every 100 ms. And we also binned 4 windows of 
the historical spike count from each neuron. The dimension of 
the final observation vector 𝑧𝑡  is 𝐷𝑧 = 20 . During the 
behavioral training across days, we assume that the tuning 
parameter 𝛼 of neuron 1 is decreased by 0.1 every day, while 
other neurons stay the same. For each day, we have 5 trials and 
each trial lasts for 8 seconds. The Principal Component 
Analysis (PCA) of the neural patterns over 3 days is shown in 
Fig. 3. The horizontal and vertical axes represent the neural 
pattern projections on the first and second principal 
components respectively. The circles represent the neural 
patterns at rest or press stage. From the tuning function, we can 
deduce that the gradual drift of firings of neural 1 only affects 
the neural patterns at the press stage. The press patterns have a 

slight drift every day, which is shown by the diamond circle 
from red, to blue, to green. On the other hand, the neural 
patterns for the rest stage stay almost the same as shown by the 
circle with stars. 

In this simulation, the input unit number is 𝐷𝑧 = 20. The 
hidden unit number is 𝐻 = 4. The number of output units is 
𝑁 = 2, where one node represents the rest stage (𝑎𝑡 = 1) and 
another node represents the press stage (𝑎𝑡 = 2). Given the 
binned neural pattern 𝑧𝑡 , the motor state prediction from 
AGREL is defined as 𝑔𝑡(𝑧𝑡) = 𝑃(𝑎𝑡 = 1) ⋅ 0 + 𝑃(𝑎𝑡 = 2) ⋅
1, which is then used to update the posterior motor state. The 
learning rate of AGREL is 𝛾 = 0.1. The parameter for the 
softmax policy is 𝛼 = 3. 

TABLE I.  PARAMETERS FOR SIMULATED NEURONS 

 Neuron 1 Neuron 2 Neuron 3 Neuron 4 

𝛼 0.5 -0.5 0 0 

𝛽 0 0 0.5 -0.5 

 

Figure 3.  The Principal Component Analysis (PCA) for the neural patterns 
across days. 

B. Simulation Results 

 

Figure 4.  The reconstructed trajectory from Kalman Filter and proposed 
RL-based Kalman Filter. 

We run both KF and RL-based KF on the simulated data. 
We first train both algorithms on the data of day 1 based on the 
simulated neural firings and the trajectory. Then we 
continuously run both algorithms on day 2 and day 3 without 
a specific re-calibration session. Our algorithm exhibits the 
advantage of continuously updating the parameters through 
the reward signal. The reconstructed trajectory is shown in Fig. 
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4. The x-axis represents the time and the y-axis represents the 
motor state 𝑥𝑡 . The blue curve shows the ground truth 
trajectory in the simulation. The black and red curves show the 
results of KF and the proposed algorithm respectively. On day 
1, since both algorithms are trained on the same data, the 
performances are similar. When switching to day 2, since the 
neural patterns for the press stage have drifted from day 1 as 
shown in Fig. 3, we can see that KF with fixed parameters 
cannot follow the neural pattern changes, making the 
reconstructed trajectory for the press stage around 0.8. On the 
other hand, for our proposed RL-based KF, due to the 
parameter adaptation by the reward signal, our algorithm could 
follow up the neural pattern changes directly from the first trial 
on day 2. Switching to day 3, the neural patterns for the press 
stage drift further away from day 1 and the KF’s reconstructed 
trajectory for the press stage can only reach approximately 0.6, 
whereas our algorithm can still maintain as good performance 
as during the previous two days. The final performance of both 
algorithms on day 2 and day 3 is shown in Table II. We can 
see that both KF and our algorithm reach a similar Correlation 
Coefficient (CC) to capture the trend of the trajectory. At the 
same time, our proposed algorithm has a much smaller Mean 
Square Error (MSE) compared with KF (63% smaller). When 
facing the neural pattern drift during BC, our algorithm could 
reconstruct the trajectory more accurately without special re-
calibration.  

TABLE II.  PERFORMANCE FOR DAY 2 AND 3 

 KF RL based KF 

Correlation Coefficient 0.9629 0.9634 

Mean Square Error 0.0405 0.0151 

IV. CONCLUSION 

BMIs allow the patients to brain control the neuro-
prosthesis as part of their bodies. During the BC process in 
BMI, the subject’s neural patterns might be different across 
time. KF cannot follow the neural pattern changes during 
usage. On the other hand, RL could follow the neural pattern 
change but the motor state prediction is relatively rough. In 
this paper, we combine RL and KF into one state-observation 
model to take advantage of both algorithms. We keep the state 
transition function to inherit the continuous state estimation as 
KF. We incorporate RL into the observation function as a 
correction for the state estimation. During the BC process, the 
parameters of RL are adaptively changed according to the 
reward signal. The changes in neural patterns could be 
captured by the continuous parameter update. We tested the 
proposed algorithm on a simulated rat lever-pressing 
experiment, where the rat’s neural patterns vary across days. 
The KF with fixed parameters cannot maintain good 
performance after the training day. Our proposed algorithm 
showed a quick adaptation to new neural patterns, which 
achieves good performance during the BC process after day 1. 
It demonstrates that the proposed algorithm is a promising 
candidate for adaptive and continuous brain control in BMI. 
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