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Abstract— The human-robot interface (HRI) based on
surface electromyography(sEMG) can realize the natural
interaction between human and robot. It has been widely used
in exoskeleton robots recently to help predict the wearer’s
movement. The sEMG signal of the paraplegic patients’ lower
limbs is weak. How to achieve accurate prediction of the lower
limb movement of patients with paraplegia has always been
the focus of attention in the field of HRI. Few studies have
explored the possibility of using upper limb sEMG signals
to predict lower limb movement. In addition, most HRIs do
not consider the contribution and synergy of sEMG signal
channels. This paper proposes a human-exoskeleton interface
based on upper limb sEMG signals to predict lower limb
movements of paraplegic patients. The interface constructs
a channel synergy-based network (MCSNet) to extract the
contribution and synergy of different feature channels. An
sEMG data acquisition experiment is designed to verify the
effectiveness of MCSNet. The experimental results show that
our method has a good movement prediction performance in
both within-subject and cross-subject situations, reaching an
accuracy of 94.51% and 80.75% respectively.

I. INTRODUCTION
The development of artificial intelligence technology and

wearable sensors has promoted the rise of human-robot
interaction. As the core of human-robot interaction, an HRI
enables direct communication with a robot via physical or
biological signals, which has received widespread attention
in the past decade [1]. Exoskeleton is a typical application
scenario of HRI, some HRI based on physical signals,
such as inertial measurement units or pressure signals, have
been used in the walking-assistant exoskeleton to realize the
movement prediction of patients with hemiplegia/paraplegia
[2-4]. In recent years, with the decoding of biological signals,
HRI based on biological signals (such as electroencephalo-
gram and electromyography) have been designed, opening
up the possibility of realizing more natural and efficient
movement predictions between human and exoskeleton [5-
7]. For paraplegic patients, the loss of lower limb motor and
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sensory function makes the exoskeleton difficult to predict
the patients’ movement, and the previous work has not yet
proposed a high-efficiency HRI specifically for paraplegic
patients. Therefore, it is urgent to propose an HRI with high
movement prediction accuracy for paraplegic patients.

Brain-computer interface (BCI) is an HRI based on elec-
troencephalogram (EEG). It can directly obtain patients’
motion intention from the EEG signal and without actual
limb movement, so the BCI has been used to predict the
movement of paraplegic patients [8-10]. But EEG signal’s
signal-to-noise ratio is low, it is susceptible to interference
from the environment and the patient’s own limb movement
and mood, which is unacceptable for the exoskeleton move-
ment assistance tasks of paraplegic patients.

Compared with the EEG signal, the sEMG signal has a
higher signal-to-noise ratio and is less interfered with by
external factors. Therefore, the sEMG-based human-robot
interface (MHRI) has been earlier and more widely used in
the walking-assistant exoskeleton [11, 12]. Given the weak
sEMG signal of the paraplegic patients’ lower limbs, recent
studies have explored the possibility of predicting the lower
limb movement based on the sEMG signal of the upper
body [13]. Most of these methods simply use the manual
extraction feature and machine learning classification models
to predict the lower limb movements of the paraplegia, and
the classification effect and the accuracy of the movement
prediction are generally low.

Deep learning has largely alleviated the need for manual
feature extraction, achieving state-of-the-art performance in
fields such as computer vision and natural language pro-
cessing [14, 15]. In fact, deep convolutional neural net-
works (CNNs) can automatically extract appropriate features
from the data. It has succeeded in many challenging image
classification tasks [16, 17], surpassing methods that rely
on handcrafted features [14, 17]. Although most research
still relies on handcrafted features, many recent works have
explored the application of deep learning in MHRI [18-
20]. This kind of MHRI mostly combines long short-term
memory networks (LSTM) and CNNs simply, ignoring the
difference in contribution and synergy of sEMG feature
channels of different subjects under the same movement.
Moreover, most researchers do not pay much attention to
whether the features extracted by CNNs have physiological
significance.

In this paper, a channel synergy-based human-exoskeleton
interface is proposed for lower limb movement prediction in
paraplegic patients. It uses the sEMG signals of 12 upper
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Fig. 1. Overall architecture of the MCSNet model. Lines denote the convolutional kernel connectivity between inputs and outputs (called feature maps).
The network starts with a channel-by-channel LSTM (second column) to learn the timing feature, then uses a two-layer convolution (third column) to
learn different spatiotemporal features. The separable convolution (fourth column) is a combination of a depthwise convolution followed by a pointwise
convolution, which can explicitly decouple the relationship within and across feature maps and learns the synergy feature of sEMG. )

limb muscles to predict the lower limb movements. The
proposed movement prediction model uses LSTM, depthwise
and separable convolutions to extract the spatiotemporal
features of multi-channel sEMG signals, and introduces an
attention module to extract the synergy of different sEMG
feature channels. An sEMG data acquisition experiment
is designed to verify the proposed channel synergy-based
network (MCSNet). The experimental results verify that
MCSNet’s prediction accuracy is better than the traditional
machine learning-based MHRI and two mainstream deep
learning-based MHRI in both within-subject and cross-
subject situations.

II. METHOD

This section presents the methodology details of the pro-
posed movement prediction model. Section II-A describes
the overall architecture of the MCSNet model. In sec-
tion II-B, we introduce seven traditional MHRIs and two
mainstream deep learning-based MHRIs, which are used to
compare to the MCSNet model.

A. Description of the MCSNet Model

Fig. 1 visualizes the proposed MCSNet model. The entire
model architecture consists of three parts. The first part is
data input, input the processed sEMG data; the second part is
feature extraction, which mainly contains four blocks, each
block establishes the connection between the feature channel-
s of the sEMG signal in different dimensions; the third part
is movement classification/prediction, which classifies the
extracted features. This section mainly describes the feature
extraction part, because it is the core of the entire model. For
sEMG trials, it was collected at a 1500 Hz sampling rate,
having C channels and T time samples.

• In block 1, for each input sEMG sample segment (size
C × 300, multiple shown in Figure 1), we performed
a channel-by-channel LSTM step to extract the timing

features of different signal channels. Since the deep-
ening of the LSTM layers will cause over-fitting, we
found this phenomenon is more serious for sEMG data
during the experiment, so we choose to use a single-
layer LSTM as the timing feature extraction block. In
this process, we define the k-th sEMG channel signal
as

Fk
sEMG,(k = 1, ...,C) (1)

which k indicates the serial number of the channel. In
order to better describe the relationship between the
LSTM block and the sEMG feature channel, a more
fine-grained channel-by-channel representation is used.
The operation with LSTM block is defined as follows:

Fk
temp = Nk

lstm(F
k
sEMG), (2)

In eq. (2), each of the sEMG signal channels is used
to generate its timing feature independently, the timing
feature from all the channels will be contacted into
Ftemp, which size is C ∗ L, L represents the length of
input signal’s sample. Since the input feature channel
Fk

sEMG,(k = 1, ...,C/2) and Fk+C/2
sEMG ,(k = 1, ...,C/2) in

our data acquisition process is opposite the left and right
symmetrical relationships on the muscle blocks in the
acquisition, the muscles of the symmetry position have
similar behavior patterns when the subjects are under
various movements, so we use the LSTM units with
shared weights used in the corresponding channel.

• In block 2, we perform two convolutional steps in
sequence. First, we fit F1 2D convolution filters with
a size of (1, 65) and output F1 feature maps containing
different timing information. We then use a depthwise
convolution of size (C, 1) to extract spatial features
for every channel. This operation provides a direct way
to learn spatial filters for different timing information,
which can effectively extract different timing and spatial
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features. The depth parameter D represents the number
of spatial filters to be learned for each time series
feature map (D=1 is shown in Figure 1 for illustration
purposes).In this block, Ftemp is transformed with the
first convolution layer as follows:

Fconv = Nconv(Ftemp), (3)

Fd−conv = Nd−conv(Fconv), (4)

In eq. (3) and eq. (4), the size of Fconv and Fd−conv is
F1 ∗C ∗L and (D∗F1)∗1∗L, respectively.

• In block 3, we use a separable convolution, a depthwise
convolution of size (1, 15) followed by F2 pointwise
convolutions of size (1, 1). The separable convolutions
first learn the kernel of each spatiotemporal feature
map individually, then optimally merge the outputs
afterward, which can explicitly decouple the relationship
within and across feature maps. This operation separates
the learning of spatiotemporal features from the combi-
nation of optimal features, which is very effective for
sEMG signals. Because sEMG signals have different
synergy between channels when performing different
movements (muscle synergy effect [21]), this is similar
to a synergy feature, which the separable convolutions
can extract. Because the padding is used in the first
stage of separable convolution, and the pixel-wised
convolution will not change the size of the feature, the
output Fsep−conv has the same size as Fd−conv.

• For block 4, we introduced a channel attention module.
This operation learns the weights of different synergy
features, which can effectively associate movements
with the most relevant synergy features and improve the
movement prediction accuracy. Moreover, there are dif-
ferences in the feature contributions of sEMG channels
in different subjects under the same movement (muscle
compensatory behavior [22]), which will amplify the
differences in the synergy feature of different subjects
under the same movement. The channel attention mod-
ule can learn different weights for different subjects to
deal with the differences in synergy features, thereby
improving the robustness of the entire movement pre-
diction model.

We input the generated attention-based spatiotemporal
features into the movement classification/prediction part. As
shown in fig. 1, the extracted features first perform a Flatten
layer step, and then pass directly to a softmax classification
with N units, where N is the number of classes in the data.
The entire model architecture uses the cross-entropy loss
function to optimize the parameters, and input 10 sEMG
samples with time-sequence everytime.

B. Comparison with Other MHRI Movement Prediction Ap-
proaches

1) Comparison with Traditional MHRI Movement Predic-
tion Approaches: We compared the performance of MCSNet
with seven traditional MHRI based on handcrafted features

and machine learning models in lower limb movement pre-
diction. In the selection of features, referring to the research
conclusions of time domain and frequency domain features
in the literature [23] and four commonly used feature sets
[24, 25], we finally select the feature of Mean Absolute
Value (MAV), WaveLength (WL), Zero Crossings (ZC), 6-
order AutoRegressive coefficient (6-AR), and average Power
Spectral Density (PSD). Furthermore, we choose Linear
Discriminant Analysis (LDA), Decision Tree (DT), Naive
Bayes (BES), Linear Kernel-based Support Vector Machine
(LSVM), Radial Basis Function-based Support Vector Ma-
chine (RBFSVM), K Nearest Neighbor (KNN), and Artificial
Neural Network (ANN) as the classification/prediction mod-
el. We use MATLAB’s Classification Learner Toolbox and
Neural Net Pattern Recognition Toolbox to implement these
models.

2) Comparison with Deep Learning-based MHRI Move-
ment Prediction Approaches: In deep learning, we compared
the performance of MCSNet with two layer CNN and CNN-
LSTM models. The two layer CNN architecture consists
of two convolutional layers and a softmax layer which is
for classification. The CNN-LSTM architecture includes two
LSTM layers, three convolutional layers, and a softmax
layer. We implemented these models in PyTorch. For spe-
cific details of the model, see https://github.com/
mufengjun260/MCSHRI.

III. EXPERIMENTS AND RESULTS

In this part, an sEMG signal acquisition experiment based
on upper limb muscles is designed to verify the effectiveness
of the method proposed in this paper. Section III-A describes
the process of the acquisition experiment and the process of
data preprocessing. Section III-B gives the implementation
details of model training. In Section III-C, we show the
MCSNet movement prediction model results and compare
MCSNet with other movement prediction models in the case
of within-subject and cross-subject.

A. sEMG Data Acquisition Experiment

A total of 8 healthy subjects were invited to participate
in the experiment. Each subject completed four lower limb
movements of standing, sitting, walking and going up stairs
while wearing the AIDER exoskeleton. During this period,
the sEMG signals of the subjects’ upper limbs were collect-
ed.

1) Participants: The eight subjects (7 males, one female)
had an average age of 26 years, a height between
165− 185 cm, and a weight between 59− 82 kg. All
subjects can independently use the AIDER exoskeleton
to complete the lower limb movements involved in the
experiment, and are in good physical condition with no
injuries to the arm. Before the experiment, each subject
had been explained the contents of the experiment and
signed an informed consent form. This experiment was
approved by the Research Ethics Committee of the
University of Electronic Science and Technology of
China.
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Fig. 2. Schematic diagram of sEMG data acquisition experiment. The upper part is the preparation posture of the four lower limb movements, We fixed
the sEMG acquisition electrode with an elastic bandage to prevent the acquisition electrode from falling off during the experiment. The lower part is the
schematic diagram of the experimental acquisition process. )

2) Procedures: Before the experiment, record the relevant
physical parameters of the subject, inform the exper-
imental procedure to the subject, and let the subject
use crutches to freely practice the four lower limbs
movements of standing, sitting, walking, and going
upstairs while wearing the AIDER exoskeleton for 30
min. Then paste sEMG acquisition electrodes on the
12 muscles of the subject’s left and right upper limbs,
including the deltoid anterior, biceps, and superior
trapezius muscles (as shown in fig. 3). The subject
puts on the AIDER exoskeleton, supports the crutches
with both hands, stands in the designated position,
and completes the sitting, standing, and going upstairs
movements 10 times after hearing the instructions,
and then completes walking movement 20 times (a
complete gait cycle is one time). Each movement is
completed within 8 seconds, all subjects are required
to perform the specified movements without using their
legs as much as possible to ensure that the collected
upper limb sEMG signals are close to the paraplegic
patients. After the movement starts, the subject main-
tains the lower limb movement preparation posture
for 2 sec (see fig. 2) and then controls the AIDER
exoskeleton to complete the corresponding lower limb
movement. Throughout the experiment, the camera is
turned on to record, and myoMUSCLE (an sEMG
acquisition device, Scottsdale, American) is used to
collect the sEMG signals of the upper limbs.

3) Data Processing: myoMUSCLE (1500 Hz) collects
the upper limb sEMG signal data of each lower limb
movement of the subject throughout the whole process.
After obtaining the sEMG data, a 50 Hz notch filter
is used to remove the power frequency interference
of the current, and a 10-450 Hz bandpass filter is

Fig. 3. The upper limb muscle used in sEMG data acquisition experiment.

used to retain the effective information of the sEMG
signal. Since our application is lower limb movement
prediction, we only intercept the sEMG data during the
movement preparation period (the period when keeping
the preparation posture still).In addition, to achieve
continuous movement prediction of lower limb, this
paper uses 200 ms (including 300-time series data) as
a time window to segment the sEMG signal, and the
movement step of the time window is 100-time series
data.

B. Implementation Details

MCSNet and the deep learning-based MHRI movement
prediction models are implemented using the PyTorch library
[25]. In MCSNet, both LSTM’s output and hidden unit are of
dimension 300, and the network’s hyper-parameters (D, F1,
L) is set to (2, 12, 300). Exponential linear units(ELU) [26]
are used to introduce the nonlinearity of each convolutional
layer. To train ours and other deep learning-based models,
we use the Adam optimizer to optimize the model’s param-
eters, with default setting described in [27] to minimize the
categorical cross-entropy loss function. We run 1000 training
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TABLE I
WITHIN-SUBJECT MOVEMENT PREDICTION PERFORMANCE (TEST SET ACC).

Traditional Machine Learning-based MHRI Deep Learning-based MHRI

Subject LDA DT BES LSVM RBFSVM KNN ANN TCNN CNN-LSTM MCSNet

1 0.9200 0.7520 0.8496 0.9451 0.9504 0.8387 0.9315 0.8377 0.9570 0.9928

2 0.8731 0.8097 0.7718 0.9026 0.9159 0.8000 0.9008 0.5849 0.9034 0.9295

3 0.7105 0.8724 0.7852 0.8146 0.8503 0.6018 0.7590 0.7722 0.9089 0.9772

4 0.7888 0.6630 0.6818 0.8594 0.8526 0.7294 0.8428 0.7543 0.9075 0.9513

5 0.7430 0.7962 0.4937 0.8675 0.8911 0.7091 0.8828 0.8525 0.9434 0.9212

6 0.8872 0.8188 0.6747 0.8936 0.8927 0.8358 0.8923 0.8373 0.8844 0.8437

7 0.9600 0.8467 0.7263 0.9602 0.9687 0.8261 0.9523 0.7576 0.9960 1.0000

Average ACC 0.8404 0.7941 0.7119 0.8918 0.9031 0.7630 0.8802 0.7709 0.9287 0.9451

iterations (epochs) and perform validation stopping, saving
the model weights, which produce the lowest validation set
loss. All models are trained on NVIDIA RTX2080Ti, with
CUDA10.1 and cuDNN V7.6. Our code implementation can
be found in https://github.com/mufengjun260/
MCSHRI.

C. Experiments Result

We compared the performance of the proposed MC-
SNet model with other MHRIs in movement classifica-
tion/prediction in both the within-subject and cross-subject
situations.

Fig. 4. Within-subject movement prediction performance, four-fold cross-
validation is used to avoid the phenomenon of model overfitting, averaged
over all folds and all subjects. Error bars denote two standard errors of the
mean.

1) Within-Subject Classification: For within-subject, we
divide the data of the same subject according to a ratio of
7:3 and then use 70% of the data to train the model for
that subject. We compare the performance of both traditional
machine learning-based MHRI movement prediction models
(LDA, DT, BES, LSVM, RBFSVM, KNN, and ANN) and
deep learning-based MHRI movement prediction models
(TCNN and CNN-LSTM) with MCSNet. Within-subject
results across all models are shown in Figure 4. It can be ob-
served, across the average lower limb movement prediction

accuracy of 7 subjects, MCSNet outperforms traditional ma-
chine learning-based and deep learning-based MHRI models.
But there is no significant statistical difference (P> 0.05). A-
mong the traditional MHRI movement prediction models, the
RBFSVM model has the highest average accuracy of 7 sub-
jects, reaching 90.31%. It is consistent with the conclusions
obtained in previous work [28]. Table I shows the prediction
accuracy of each subject under different MHRI movement
prediction models. It can be found that the same movement
prediction model has a large difference in the accuracy for
different subjects (especially the traditional MHRI movement
prediction model). In contrast, MCSNet has a high accuracy
rate of lower limb movement prediction for all subjects, and
the accuracy rate is evenly distributed. It means that MCSNet
can effectively extract each subject’s lower limb movement
feature, thereby achieving good movement prediction.

2) Cross-Subject Classification: In the case of cross-
subject, we randomly selected the data of three subjects to
train the model and selected the data of two subjects as
the validation set. The whole process is repeated ten times,
producing ten different folds.

Fig. 5. Cross-subject movement prediction performance, averaged over all
folds. Error bars denote two standard errors of the mean.

Cross-subject prediction results across all models are
shown in fig. 5. It can be seen that the traditional and
deep learning-based MHRI movement prediction models
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have poor performance in the cross-subject situation, with an
average accuracy rate of about 70%. However, the MCSNet
model proposed in this paper can still achieve an accuracy
of 80.25% in lower limb movement prediction, which has a
significant statistical difference (P < 0.05). This result shows
that the MCSNet model proposed in this paper can extract the
deep common features of different subjects under the same
lower limb movement. The model has good robustness.

IV. CONCLUSIONS

In this paper, a channel synergy-based human-exoskeleton
interface is proposed for lower limb movement prediction in
paraplegic patients. It uses the sEMG signals of 12 upper
limb muscles as input signals, which can avoid the problem
of weak sEMG signals in the lower limbs of paraplegic
patients. The interface constructs a channel synergy-based
network (MCSNet), it uses LSTM, depthwise and separable
convolutions to extract the spatiotemporal features of multi-
channel sEMG signals, and introduces an attention module
to extract the synergy of different sEMG feature channels.
An sEMG acquisition experiment is designed to verify
the effectiveness of the MCSNet model. The results show
that MCSNet has a good movement prediction performance
in both within-subject and cross-subject situations. What’s
more, the movement prediction time of MCSNet is estimat-
ed. Plus the sEMG acquisition time (about 300 ms), the
entire movement prediction time is about 400 ms, which
is much shorter than the movement execution time of the
exoskeleton. This means that MCSNet can be used on the
actual lower limb exoskeletons. In the future, we consider
applying the proposed human-exoskeleton interface to an
actual exoskeleton platform. In addition, we will focus on
multi-modal movement prediction based on sEMG and EEG.
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