
  

  

Abstract— This study investigated the possibility of using 

functional near infrared spectroscopy (fNIRS) during right- and 

left-hand motor imagery tasks to select an optimum set of 

electroencephalography (EEG) electrodes for a brain computer 

interface. fNIRS has better spatial resolution allowing areas of 

brain activity to more readily be identified. The ReliefF 

algorithm was used to identify the most reliable fNIRS channels. 

Then, EEG electrodes adjacent to those channels were selected 

for classification. This study used three different classifiers of 

linear and quadratic discriminant analyses, and support vector 

machine to examine the proposed method. 

Clinical Relevance— Reducing the number of sensors in a BCI 

makes the system more usable for patients with severe 

disabilities. 

I. INTRODUCTION 

Electroencephalography (EEG) is the most frequently used 
imaging technique in brain computer interfaces (BCIs). It is a 
non-invasive technique that offers high temporal resolution, 
low cost, and portability. A drawback of EEG is its relatively 
poor spatial resolution compared to functional magnetic 
resonance imaging (fMRI) and functional near infrared 
spectroscopy (fNIRS) [1]. The brain’s electrical activities are 
produced by voltage change across the neurons’ cell 
membranes. The electrical activity generated by a single 
neuron is too small to be detected by EEG electrodes. 
Therefore, each EEG electrode records electrical activities due 
to many neurons in the brain. Each EEG signal consists of a 
combination of signals originating from different areas of the 
brain [2]. When attempting to detect EEG signals, the skull and 
the scalp attenuate the electrical signals produced by the 
brain’s neuronal activities making it more difficult for an EEG 
system to identify the electrical current source in the brain [3].  

The fNIRS is another non-invasive imaging approach that 
measures the concentration changes of oxy- (HbO) and deoxy-
hemoglobin (HbR) molecules in the superficial layer of brain’s 
cortex. These changes occur due to the brain’s neuronal 
activities that also produce the EEG signals. Like EEG, it is 
portable and low cost compared to fMRI and 
magnetoencephalography (MEG) and is a suitable option for 
use outside the laboratory. Furthermore, it offers good spatial 
resolution, and is less sensitive to electrooculography (EOG) 
and electromyography (EMG) artifacts compared to EEG [4]. 
By monitoring the blood flow changes in the brain cortex, the 
fNIRS systems can detect areas of the brain that are active or 
nonactive during different tasks. A drawback of the fNIRS is 
its inherent delay due to slower hemodynamic response 
compared to the brain’s electrical activities. Therefore, using 
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an fNIRS-based BCI in real time may pose challenges due to 
fNIRS slower response to the brain’s neural activities.  

Research has shown that standard EEG electrode 
placement on commercial systems may not target the areas of 
highest activity in children with cerebral palsy [5]. The main 
aim of this study was to investigate the use of fNIRS signals 
to detect active brain areas during motor imagery tasks, and to 
use this information to select an optimum set of EEG 
electrodes for classification. Minimizing the number of 
sensors in a BCI reduces the computational complexity and the 
set-up time. By combining the advantages of both EEG and 
fNIRS systems (i.e., fNIRS spatial resolution and EEG’s high 
temporal resolution), this study leads to patient specific BCIs. 

II. METHODOLOGY 

In this study, we used an open-access dataset provided by 

Shin et al. [6]. A summary of the data is described in sections 

A, B, and C, while sections D and E describe the analyses. 

A. Participants 

The data were collected from 29 healthy individuals who 
reported no neurological or brain-related diseases. The 
participants consisted of 14 males and 15 females with an 
average age of 28.5 ± 3.7 years (mean ± standard deviation). 

B. Data Acquisition 

The EEG data were recorded at 1000 Hz using 30 active 
electrodes by BrainAmp EEG system (Brain Products GmbH, 
Gilching, Germany). The linked mastoid was used as 
reference. The electrodes were placed on a fabric cap 
(EASYCAP GmbH, Herrsching am Ammersee, Germany) 
according to the international 10-5 system. An additional 
electrode was placed at Fz as ground. 

The fNIRS data were recorded at 12.5 Hz by NIRScout 
(NIRx GmbH, Berlin, Germany). A total of 14 transmitters and 
16 detectors were placed over the entire head resulting in 36 
fNIRS channels. The frontal, motor, and occipital regions 
consisted of 9, 24, and 3 channels, respectively. The inter-
optode distance was kept at 3 cm. Fig.1 illustrates the locations 
of the EEG and fNIRS sensors in this dataset. The EEG and 
fNIRS data were down-sampled to 200 and 10 Hz, 
respectively, by Shin et al. [6].  

C. Experimental Paradigm 

Each participant performed three sessions of left- and right-

hand motor imagery. Fig. 2 depicts the paradigm for each 
session. As shown, each session begins by 1 minute of rest, 

followed by 20 repetitions of the task, and ends with 1 minute 

of rest. The task period started with 2 seconds of visual 
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instructions indicating the hand with which the motor imagery 
task was to be performed. Following the instructions, the 

participants performed the task by imagining opening and 

closing their hands as if they were grabbing a ball at a rate of 

1 Hz. Each task period ended by a short rest period which was 

randomized to be between 15 and 17 seconds. Each hand 

motor imagery task was done 10 times in each session (30 in 

total for all three sessions). 

D. Data Processing 

1) Pre-Processing 

The EEG data were pre-processed using the EEGLAB 

toolbox in MATLAB R2021a (MathWorks in Natick, MA, 

USA) [7]. First, the raw EEG data were bandpass filtered from 

0.5 to 50 Hz with a FIR filter. Then, an automatic artifact 

rejection tool based on independent component analysis was 

used to remove artifacts from the EEG signals [8]. Finally, the 

data were filtered using a 2nd order Butterworth bandpass 

filter from 8 to 30 Hz to only include signals containing the µ 
and β frequency bands [9]. 

The raw fNIRS data were converted to data that represented 

concentration changes of HbO and HbR according to the 

modified Beer-Lambert law [10] by the SPM-fNIRS toolbox 

[11] in MATLAB. The HbO and HbR data were bandpass 

filtered from 0.01 to 0.2 Hz using a 4th order recursive 

Butterworth filter to remove artifacts associated with cardiac 

and respiration noise, and the slow physiological drift in 

signal [12-14]. Baseline correction was achieved by 

averaging the data between -5 and 0 s, and then, subtracting 

the average value from the corresponding task data [15]. 

2) Feature Extraction 
For EEG signals, the event related synchronization (ERS) 

and desynchronization (ERD) measures were obtained by 

calculating the relative changes in power during the motor 

imagery task compared to baseline (rest), and are shown in (1) 

[16]: 

𝐸𝑅𝐷 𝐸𝑅𝑆⁄ =
𝑃𝑡𝑎𝑠𝑘−𝑃𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑃𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
     (1) 

where Ptask is the average power over one second during the 

task, and PBaseline is the average power over one second prior 

to the task onset. 

For fNIRS, the features were calculated by obtaining the 

mean of HbO (mHbO) over a window of one second during 
the task according to (2): 

𝜇𝑤 =
1

𝑁𝑤
∑ ∆𝐻𝑏𝑂(𝑘)
𝑘2
𝑘=𝑘1

      (2) 

where w denotes window size (i.e., one second), µw is the 

mean for the given window, k1 and k2 are the start and end of 

the window, Nw is the number of observations in the window 

and is equal to 10 (i.e., 10 Hz × 1 s), and ΔHbO is the HbO 

data within that window. 

3) Channel Selection 

This study used the ReliefF algorithm, a filter-based 

channel selection method, to identify the most relevant fNIRS 

channels. This algorithm is a computationally efficient 

channel selection technique that uses the k nearest neighbours 
approach to assign a weight to each channel [17, 18]. It selects 

a random instance (xi) and searches its k nearest neighbours 

and records the number of its neighbours that belong to the 

same class (hit) and the number of neighbours that belong to 

a different class (miss). Based on the number of hits and 

misses, a weight is assigned to each channel. Channels are 

ranked based on their corresponding weights; those with the 

highest weights being the most relevant for classification. In 

this study, a k value of 10 was selected [19, 20]. 

Two different methods were evaluated using the ReliefF 

algorithm. First, the top five fNIRS channels with the highest 
weights of all 36 channels were identified. Second, the top 

three channels from each brain area were calculated: the 

frontal, and each hemisphere of the motor cortices. Three 

motor channels from each hemisphere were selected due to 

the bilateral hand movement imagery tasks which would 

result in neural activities in the motor cortex of the 

contralateral hemisphere [21]. 

To minimize the number of EEG electrodes, those adjacent 

to the top five fNIRS channels selected previously were 

identified. The resulting electrodes were named “Top 5”. 

Similarly, the EEG electrodes adjacent to the top three frontal 

and top six motor cortex channels were identified. These 
electrodes were named “F-3” and “M-6”, respectively. 

4) Classification 

Three different supervised machine learning algorithms of 

linear discriminant analysis (LDA), quadratic discriminant 

analysis (QDA), and support vector machine (SVM) with 

quadratic kernel function were used in this study. To evaluate 

the classification accuracies, a 10-fold cross validation was 

used for each classifier. 
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Figure 1. EEG electrodes and fNIRS optodes locations. The EEG 
electrodes are shown by yellow hexagons. The fNIRS emitters and 
detectors are shown by red and blue circles, respectively. Each line 

connecting the circles forms a channel. The frontal, motor, and 
occipital regions for the fNIRS channels are separated by dashed 
rectangles. 
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Figure 2. Experimental paradigm. 
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Figure 3. Average classification accuracies for different electrode 
locations and classifiers. 

E. Data Analysis 

All statistical analyses were done in IBM SPSS Statistics 

Ver. 27 (IBM Corp. in Armonk, NY, USA). To examine 

differences in classification accuracies among electrode 

selections and classifiers, a two-way (factors: electrode 

locations and classifiers) repeated measures ANOVA was 
used to test for significant main effects and interactions. The 

significance level (alpha) was set at 5%, and Bonferroni 

correction was used prior to pairwise comparison. In the case 

of significant interaction effects, simple effects were analyzed 

by running one-way repeated measures ANOVA twice: once 

with electrodes selection as factor, and a second time with 

classifier as factor.  

III. RESULTS 

Figure 3 and Table 1 depict the average classification 

accuracies across all participants for different electrode 

selections (i.e., all, motor, frontal, M-6, Top 5, occipital, and 

F-3), and classifiers (SVM, QDA, and LDA). As shown, the 

highest accuracy is obtained when using all electrodes for 

classification, followed by the electrodes over the motor and 

frontal cortices.  

The statistical analysis revealed significant main effects for 

both electrode selections (p < 0.001) and classifier (p < 

0.001), and significant interaction effect (p < 0.001). Pairwise 

comparison of the electrode locations showed that using all 
and the F-3 electrodes resulted in the highest and lowest 

classification accuracies, respectively, compared to other 

electrode locations (p < 0.05) (see Figure 4). Secondly, the 

motor and frontal electrodes led to accuracies that were not 

significantly different from each other (p > 0.05).  

The pairwise comparison of the classifiers indicated that 

both SVM and QDA resulted in accuracies that were not 

significantly different from each other (p > 0.05), and they 

were both higher than LDA (p < 0.05) (see Figure 5). 

IV. DISCUSSION 

BCIs are technologies that have the potential to help 

individuals with severe disability interact with their 

environment using their thoughts rather than their muscles. 

However, electrode placement may vary as compared to a 

population without disability. To make the BCIs more usable 

for the patients outside the laboratory, the number of sensors 

should be minimized and located effectively. This also 

reduces the computational complexity of the BCI by 

removing the redundant or irrelevant sensors from the system. 
The ReliefF algorithm used in this study is a filtering 

channel selection algorithm which has been used in the 

literature for channel and feature selection and achieved good 

results. The filtering methods examine the intrinsic properties 

of the channels and rank them based on their level of 

importance [22]. For instance, a study used this technique to 

reduce the number of EEG electrodes from 118 to only 10 
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Table 1. Average classification accuracies (in percent) for 
different electrode locations and classifiers. 

[1] Electrode 

Locations 

Classifier 

SVM QDA LDA 

All 76.3±3.8 82.2±3.9 69.7±4.5 

Motor 66.3±4.1 64.9±4.3 60.3±4.0 

Frontal 65.5±3.9 64.0±3.8 60.1±4.4 

M-6 62.0±4.5 60.2±4.5 58.7±4.6 

Top 5 60.7±3.3 59.3±3.1 58.3±4.0 

Occipital 59.0±4.4 58.6±3.2 59.0±3.9 

F-3 55.6±3.8 56.7±3.2 55.8±4.1 

 
 

 
* indicates significant difference from “All” (p < 0.05). 

+ indicates significant difference from “Motor” and “Frontal” (p < 0.05). 

# indicates significant difference from “M-6”, “Top 5”, and “Occipital” (p 

< 0.05). 

& indicates significant difference from “F-3” (p < 0.05). 

Figure 4. Average classification accuracies of all classifiers for 

different electrode locations. Standard deviation is shown by the 
error bars. 
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* indicates significant difference from “SVM” and “QDA” (p < 0.05). 

# indicates significant difference from “LDA” (p < 0.05). 
Figure 3. Average classification accuracies of all electrode 
locations (All, Motor, Frontal, M-6, Top 5, Occipital, and F-3) 
for different classifiers. Standard deviation is shown by the 
error bars. 
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during right hand and right foot motor imagery tasks, and 

achieved classification accuracies of over 88% [19]. Another 

study used this algorithm to reduce the number of fNIRS 

features from 180 to only 5 features for a right- and left-hand 

motor imagery tasks, and achieved classification accuracies 
of about 65% [23]. This was higher than when all 180 features 

were used for classification.  

Due to the higher spatial resolution of fNIRS, the channel 

selection algorithm was applied to identify the highest ranked 

fNIRS channels over the entire head (Top 5), and the frontal 

(F-3) and motor (M-6) cortices. Next, the EEG electrodes 

adjacent to the highest ranked fNIRS channels were identified 

and used for classification to ensure placement over the areas 

of highest brain activity. The proposed method in this study 

resulted in average accuracies of 56.1, 60.3, and 59.4% for F-

3, M-6, and Top 5 electrodes, respectively. While these 

accuracies are significantly lower than when all electrodes 
were used for classification, the difference in accuracy 

between all the motor cortex electrodes and the M-6 

electrodes was less than 2% for LDA. This difference was 

larger for SVM and QDA, and was less than 5%. These results 

can potentially be improved using different algorithms. For 

instance, Morioka et al. showed the merit of the proposed 

methodology and estimated the cortical current source during 

spatial attention tasks by Variational Bayesian Multimodal 

Encephalography algorithm and the fNIRS signals. Using this 

method, they were able to classify the EEG signals with an 

accuracy of close to 80% which was higher than when the 
fNIRS signals were not used for current source estimation 

(about 70%) [24].  

 Future work will involve investigating other channel 

selection techniques to improve the classification accuracies 

while minimizing the number of the sensors. For instance, one 

study used source localization technique to identify the active 

areas of the brain during motor imagery tasks. Using this 

method, they reduced the number of EEG electrodes from 64 

to only 3, and achieved an accuracy of 74.7% [25]. Different 

EEG feature extraction technique should be assessed as well, 

since different techniques result in different accuracies [26].   

V. CONCLUSION 

This study proposed a method to identify the location of the 

brain in which the highest activity occurred using fNIRS to 

target EEG electrode placement. While this technique 

provided some insight, more research is needed to improve 

the localization accuracy using the proposed method. 
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