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Abstract— In this paper, using an adversarial variational
encoder model, we propose a two-step data-driven approach
to extract cross-subject feature representations from neural
activity in order to decode subjects’ behavior choices. First,
various characteristics of the recorded behavior are computed
and passed as features to a clustering model in order to
categorize different behavior choices in each trial and create
labels for the data. Then, we utilize a variational encoder
to learn the latent space mappings from neural activity. An
attached adversary network is used in a discriminative setting
to detach the subject’s individuality from the representations.
Recorded cortical activity from Thy1-GCaMP6s transgenic
mice during a motivational licking experiment was used in this
study. Experimental results demonstrate the capabilities of the
proposed method in extracting discriminative representations
from neural data to decode behavior by achieving an average
classification accuracy of 88.8% across subjects.

I. INTRODUCTION

Understanding the relationship between neural activity and
behavior has been a challenging neuroscience research prob-
lem. To approach this problem, conditioned and simplistic
paradigms have been typically used to make evaluating the
relationship between the behavior (e.g. decision, memory,
learning) and the brain function, feasible. Behavior is tra-
ditionally characterized with low-dimensional task-related
variables. Once low dimensional features of the behavior
are extracted, through a supervised or unsupervised method,
dependency of the neural activity to these behavioral signals
can be modeled. Classic approaches usually use simple
quantitative measures that are easy to relate back to the
experiment [1]. Recent approaches have begun to use ma-
chine learning and unsupervised methods to decompose more
detailed behavioral measures [2]–[5].

A major challenge in neural decoding is the undesirable
subject variability, which imposes difficulties in identifying
features in neural signals that are common across subjects
for decoding behavior. In general, to overcome the chal-
lenge of subject variability, promising results have been
recently demonstrated using transfer learning approaches via
autoencoders models [6]–[11]. For example, the cross-subject
transfer learning approach in [10] aims to discover and
exploit shared features that are invariant and generalizable
across subjects. These methods rely on learning generative
models of the data utilizing variational autoencoders (VAEs)
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that allow for the synthesis of data samples from latent rep-
resentations for unsupervised feature learning, or generative
adversarial networks (GANs) [12]. In another example, in
[11], using adversarial learning within a deep encoder net-
work, session-invariant person-discriminative representations
were learned from EEG data for brain computer interfaces
(BCIs).

In this study, we propose a two-step data-driven approach
to decode behavior from neural data. Our approach is based
on a deep autoencoder model, which includes the following
steps. As the first step, we extract various characteristics of
recorded behavior choices as feature vectors. Using a clus-
tering algorithm, we categorize behavior choices in each trial
and create labels for the data. Next, we utilize a variational
encoder with an attached adversarial network approach for
transfer learning to capture discriminative properties that are
robust to subject variability for decoding behavior choices.
The adversarial network aims to learn features from cortical
activity timeseries, while the adversary network is used in
a discriminative setting to detach the subject’s individuality
from the representations.

The remaining of this paper is organized as follows.
Experimental procedures are described in Section II. Data
analysis and methods are discussed in Section III. Experi-
mental results are presented in Section IV, and the paper is
concluded in Section V.

II. EXPERIMENTAL DATA

Widefield calcium imaging of fluorescence indicators in
mice have been increasingly used in neursocience research,
and has been utilized to study the relationship between the
brain function and injury [13], [14], [15], [16] [17], as well
as the relationship between the brain function and behavior
[5], [18], [19].

The data used in this study was obtaiend from 8 subjects
and was provided by the Department of Cell Biology and
Neuroscience. The experiments were approved by the Rut-
gers University Institutional Animal Care and Use Commit-
tee. The data acquisition procedures are fully described in our
previous work [5], [18], [19]. Briefly, cortical Ca2+ transient
activity were recorded from Thy1-GCaMP6s transgenic mice
via a customized microscope that provided the visualization
of nearly the entire left hemisphere. Filtered fluorescence
emission from the cortex was acquired using a MiCam Ul-
tima CMOS camera at 100 frames per sec. Recordings were
obtained from each mouse in two sessions. Each session,
included 100 trials. Each trial consisted of a 0.9 s baseline
followed by 1 s rising tone auditory stimulation. Water was
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Fig. 1: (a) Timeline in each trial. (b) Dots indicate recorded
lick responses. The duration of tone stimulus, water delivery
and response window are shown in yellow, blue and green,
respectively.

delivered 500 ms after the stimulus for the duration of 300
ms, and the trial was ended at 10.23 s (Fig. 1-a). Licking
instances were recorded via a capacitive sensor.

III. DATA ANALYSIS AND METHODS

A. Extracting Cortical Activity Timeseries

Thirty 5×5-pixel regions of interest (ROIs)/channels (C =
30), distributed over the cortex, were selected based on their
location relative to the bregma point. Timeseries associated
with each channel were obtained by averaging the intensities
of pixels within the 5× 5-pixel regions, in each frame.

B. Behavior Clustering and Label Generation

As the session progresses, mice get more familiarized to
the auditory stimulation and learn better that the time to lick
is after the tone is played. An example of licking behavior
from one subject in one session is shown in the Fig. 1-
b. It can be observed that, as trials progress, the mouse
appears to be more engaged in the experiment and shows
signs of learning since the majority of the licks are occurring
within the response window rather than random instances
during the course of the trial. Similar behavior was observed
for other mice, demonstrating that subject’s lick behavior
changes throughout the course of a session showing different
stages of motivation, engagement, and learning.

To quantify the behavior of subjects within each trial and
distinguish between the two possibilities —that is, motivated
licking choices conditioned to the auditory stimulation as
opposed to spontaneous licking —we used “lick rate” as
the behavior/learning measure and used it to sub categorize
the trials. For each trial, we calculated the lick rate for 4
segments of the trial as number of licks/duration of the
segment. These 4 segments are the baseline (900 ms), the
tone stimulus (1 s), the response window (2 s), and during
the remaining of the trial.

A feature vector of f = [f1, f2, f3, f4] ∈ R1×4 was
generated for each trial. A series of k-means-based clustering
algorithm with respect to the number of desired clusters was

then built, and the best one with respect to the Silhouette
value was identified. The best optimal Silhouette value was
achieved with k = 2. The label of clusters formed by the
k-means algorithm with k = 2, were used as the label for
timeseries data of each trial.

C. Data Organization

For each trial, a sliding window with duration of T and
step size of w time points was moved over the timeseries
within the response window (2 s after water delivery).
Data within each window was formed as a data matrix
X ∈ RC×T . Gathering data from all the trials, the dataset
{(Xs

i , y
s
i )}

ns
i=1, consisting of a total of ns data samples, was

obtained for subject s, where, ysi ∈ {0, 1} represents the class
label of behavior data generated for each trial. The attribute
s ∈ {1, . . . , S} denotes the subject label among s subjects
(i.e. a vector of size 1 × S with one value 1 at sth index,
and 0 in other indices).

D. Model Architecture

Given the data, the aim is to build a discriminative decoder
model that predicts y from observation data X. To make the
model generalizable across subjects, the prediction should
be invariant to the attribute s. We aim to enforce the
latent representation to include minimum subject-dependent
information via using an adversary network. This makes the
model capable of achieving discriminative properties that are
robust to subject variability and correspond to the common
structure of the data shared among the subjects.

The network architecture involved variational autoencoder
as an stochastic network, to minimize the reconstruction loss
of the input data X and X̂. The encoder network is trained to
learn representation z = g(X, θe). Obtained representations
are used as inputs to a classifier with parameter θc to
estimate y, and also as inputs to an adversary network with
parameter θa, which aims to recover the variable s. The
adversary network is trained to predict s by maximizing
the likelihood qθa(s|z). At the same time, the encoder
is trying to conceal the embedded information regarding
s in the representation z, as well as including sufficient
discriminating information for the classifier to estimate y.
These are achieved by minimizing the likelihood qθa(s|z)
for the former and maximizing the likelihood qθc(y|z) for
the later objective. Therefore, the final objective function to
train the proposed model structure simultaneously can be
written as

arg min
θc,θe

max
θa
L(θe, θc, θa) (1)

L = EzEy [−log qθc(y|z)] + λ EzEs [log qθa(s|z)], (2)

where λ ≥ 0 denotes the weight parameter that adjusts the
impact of the adversary network. The optimization algorithm
uses stochastic gradient descent for the adversary and the
encoder-classifier networks to optimize (1) based on [10].

The structure of the proposed method is illustrated in Fig.
2 and is detailed in Table I. In our implementation, the
temporal and spatial convolutional architectures are utilized
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Fig. 2: (a) Schematic representation of the proposed autoencoder architecture for behavior feature extraction and labeling.
(b) The proposed network model for behavior prediction based on cortical activity timeseries.

in the encoder architecture, embedding the temporal and
spatial filtering. We used 4 temporal and 8 spatial convo-
lutional units. The last fully-connected layer at the output
of the encoder generates dz-dimensional latent parameter
vector. The classifier utilizes representation z as an input
to a fully-connected layer with a softmax unit for class
label discrimination. The adversary network is realized as
a fully-connected layer with S softmax units for subject
discrimination, to obtain normalized log-probabilities that
will be used to calculate the losses. We used W = 100 for
the temporal convolution kernel size, C = 30 for the spatial
convolution kernel size, and the latent vector dimension of
dz = 8.

TABLE I: Encoder-Decoder Network Architecture

4 × 1D Temporal Conv. (1×W ) + ReLU
Encoder 8 × 1D Spatial Conv. (C × 1) + ReLU

(Reshape)+ Fully Connected layer (20T × dz)
Classifier Fully Connected layer + softmax
Adversary Fully connected layer + softmax (dz × S)

IV. RESULTS

As discussed in Section III-B, different stages of behavior
were noticeable during the course of the experiment. We
identified these changes to discriminate the subject’s behav-
ior between the two possibilities of motivated licking choices
conditioned to the auditory stimulus and spontaneous licking.
We considered the licking rate in 4 different duration of
the experiment (baseline, tone stimulus, response window,

Fig. 3: Average lick rate at 4 different duration of the
experiment over the trials of the two behavior categories.

and remaining of the trial) as behavioral features. Fig. 3
shows the lick rate for these averaged over the trials from all
subjects, labeled as motivated licking or spontaneous licking.
We can observe that the lick rate at the baseline, during the
tone stimulus, and the remaining of the trial considerably
decreases in the motivated trials compared to the spontaneous
licking trials. However, the lick rate during response window
remains the same in both behavior categories.

The dataset {(Xs
i , y

s
i )}

ns
i=1 was collected by selecting the

timeseries with duration T = 400 time points and step size
of w = 200 and gathering the data matrices Xi ∈ R30×400

as shown in Fig. 2-b. Each Xi was labeled as motivated or
spontaneous based on their corresponding category described
in Section III-B. Considering the two recording sessions each
with 100 trials, the dataset {(Xi, yi)}ns

i=1 of size ns = 1800
is collected for each subject s ∈ {1, . . . , 8}.

We randomly selected 2 subjects to hold-out for later
cross-subjects transfer learning evaluation. For each analysis,
we repeated this procedure 20 times and presented the aver-
aged outputs. The network was trained using the remaining
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subjects in a training-validation analysis with 80% for train-
ing and 20% for validation. Training data were normalized to
have zero mean. The selected value ranges for the adversarial
weight are λ ∈ {0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5}. Note that
these parameter combinations can be further optimized by
cross-validating the model learning process.

Fig. 4: Transfer learning average classification accuracy
results for the 2 held-out subjects.

Cross-subjects analysis was performed to evaluate the
trained model’s transfer learning performance. Fig. 4 demon-
strates the average transfer learning results for the 2 held-out
subjects with different choices of λ. We observe that using
the adversary network, (λ 6= 0), the accuracy result signifi-
cantly improves, which emphasizes the added impact of the
adversary network in achieving a more stable performance to
decode data of unknown subjects by eliminating the subject
dependent information from the representations. Note that
λ = 0 eliminates the input of adversary network in the model
training. The highest accuracy of 88.8% was achieved with
λ = 0.1, demonstrating acceptable performance in cross-
subject transfer learning of behavior decoding.

V. CONCLUSION

In this study, we proposed a framework based on autoen-
coder model for transfer learning in decoding behavior from
neural data. We employed a two-step data-driven approach.
First, various characteristics of recorded behavior were ex-
tracted as feature vectors and fed as input to a clustering
model to create labels for the data. Next, we utilized a
variational encoder with an attached adversarial network for
cross-subject transfer learning which captures discriminative
properties that are robust to subject variability. Experimental
results demonstrated the benefits of the proposed framework
in extracting robust subject invariant features and the capa-
bility of the proposed method for decoding behavior.

VI. ACKNOWLEDGMENT

We thank Professor David. J. Margolis and Dr. Christian.
R. Lee, with the Department of Cell Biology and Neuro-
science at Rutgers university, for acquiring and sharing the
data.

REFERENCES

[1] F. A. Wichmann and N. J. Hill, “The psychometric function: I. fitting,
sampling, and goodness of fit,” Perception & Psychophysics, vol. 63,
no. 8, pp. 1293–1313, 2001.

[2] S. R. Egnor and K. Branson, “Computational analysis of behavior,”
Annual Review of Neuroscience, vol. 39, pp. 217–236, 2016.

[3] A. B. Wiltschko, M. J. Johnson, G. Iurilli, R. E. Peterson, J. M.
Katon, S. L. Pashkovski, V. E. Abraira, R. P. Adams, and S. R. Datta,
“Mapping sub-second structure in mouse behavior,” Neuron, vol. 88,
no. 6, pp. 1121–1135, 2015.

[4] K. Raeisi, M. Mohebbi, M. Khazaei, M. Seraji, and A. Yoonessi,
“Phase-synchrony evaluation of EEG signals for multiple sclerosis
diagnosis based on bivariate empirical mode decomposition during a
visual task,” Computers in Biology and Medicine, vol. 117, p. 103596,
2020.

[5] L. Zhu, C. R. Lee, D. J. Margolis, and L. Najafizadeh, “Decoding
cortical brain states from widefield calcium imaging data using visi-
bility graph,” Biomedical Optics Express, vol. 9, no. 7, pp. 3017–3036,
2018.

[6] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and
Q. He, “A comprehensive survey on transfer learning,” Proceedings of
the IEEE, vol. 109, no. 1, pp. 43–76, 2020.

[7] S. Salsabilian and L. Najafizadeh, “An Adversarial Variational Autoen-
coder Approach Toward Transfer Learning for mTBI Identification,”
in 10th International IEEE/EMBS Conference on Neural Engineering
(NER), 2021.

[8] C. Tan, F. Sun, B. Fang, T. Kong, and W. Zhang, “Autoencoder-based
transfer learning in brain–computer interface for rehabilitation robot,”
International Journal Of Advanced Robotic Systems, vol. 16, no. 2, p.
1729881419840860, 2019.

[9] H. Li, N. A. Parikh, and L. He, “A novel transfer learning approach
to enhance deep neural network classification of brain functional
connectomes,” Frontiers in neuroscience, vol. 12, p. 491, 2018.

[10] G. Louppe, M. Kagan, and K. Cranmer, “Learning to pivot with
adversarial networks,” arXiv preprint arXiv:1611.01046, 2016.
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