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Abstract— Physiological signals like Electrocardiography
(ECG) and Electroencephalography (EEG) are complex and
nonlinear in nature. To retrieve diagnostic information from
these, we need the help of nonlinear methods of analysis.
Entropy estimation is a very popular approach in the nonlinear
category, where entropy estimates are used as features for signal
classification and analysis. In this study, we analyze and com-
pare the performances of four entropy methods; namely Distri-
bution entropy (DistEn), Shannon entropy (ShanEn), Renyi
entropy (RenEn) and LempelZiv complexity (LempelZiv) as
classification features to detect epileptic seizure (ES) from
surface Electroencephalography (sEEG) signal. Experiments
were conducted on sEEG data from 23 subjects, obtained from
the CHB-MIT database of PhysioNet. ShanEn, RenEn and
LempelZiv entropy are found to be potential features for
accurate and consistent detection of ES from sEEG, across
multiple channels and subjects.

Keywords— Entropy, Epilepsy, Epileptic Seizure, Seizure
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I. INTRODUCTION

Like brain cancer, Alzheimer’s, stroke, and dementia,
epilepsy is considered as one of the major brain diseases
that affect the Central Nervous System resulting in seizure
episodes from uncontrolled brain activity. About 65 million
people around the globe suffer from this dangerous disorder.
Surface electroencephalography (sEEG) is the most popu-
larly used method for the diagnosis of epileptic seizures (ES).

To extract diagnostic information from the sEEG, several
statistical features, both linear and nonlinear have been
used [1–4]. Like any other physiological signal, sEEG also
exhibits highly complex and nonlinear dynamics [5]. Natu-
rally, popular nonlinear measures like entropy, Poincare plot,
Lyapunov exponent, correlation dimension and so on are
preferred for such type of signal analysis [6, 7].

In this study, we compare and evaluate the proficiency of
different entropy methods in extracting diagnostic informa-
tion from sEEG, for detecting ES. The entropy of a signal
can be defined as a measure of chaos, irregularity or disorder
contained in it. In the past, studies have confirmed the
usefulness of entropy features for ES detection [1–4, 8–11].
Here, we intend to compare the usefulness of one entropy
feature over another, for ES detection from sEEG.

Entropy methods namely Distribution entropy (DistEn),
Shannon entropy (ShanEn), Renyi entropy (RenEn) and
LempelZiv complexity (LempelZiv) are compared in this
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study. EEG data from the most commonly used Chil-
dren’s Hospital Boston-Massachusetts Institute of Technol-
ogy (CHB-MIT) database of PhysioNet [12] has been used
for the analysis.

II. DATA AND METHOD

A. Data

Publicly available CHB-MIT database contains 24 sets of
EEG data, from 23 subjects with focal seizures. Each subject
contains anywhere between 9-42 records, where a record
represents 1-4 hours of EEG (256Hz sampling frequency)
recorded from multiple channels (e.g. bipolar montages of
frontal, parietal, occipital and temporal brain lobes). For this
study, we have considered all channels from the brain’s left
hemisphere for analysis as this part is prone to show more ac-
tivity during ES [13]. This includes 9 channels namely; ’FP1-
F7’, ’F7-T7’, ’T7-P7’, ’P7-O1’, ’FP1-F3’, ’F3-C3’, ’C3-P3’,
’P3-O1’ and ’T7-FT9’. From these 9 channels, every record
that contains at least one seizure event is taken. This brings
us to a total of 122 records for analysis. Signal segments with
a 5-second window were generated from each channel of the
record. Each segment was then labeled as ’with seizure’ or
’without seizure’, depending on the presence or absence of
a seizure episode in it. These segments were then used for
feature extraction. A total of 1088705 non-seizure and 14344
seizure segments were obtained from this data setup.

B. Method

In the analysis of this study, two main sets of steps were
taken. Feature generation and feature importance calculation
are the main steps for analysis.

1) Feature generation: Metadata is provided with the
dataset that contains information about subjects and EEG
recordings. This metadata was accessed to get information
about if a record contains seizure(s) and their onset time
in the record. Records with at least one seizure event
were considered for feature extraction. As the recordings
are from multiple channels, the signal from each channel
was separated from the record. For each selected channel’s
signal, segmentation was done considering a 5-second non-
overlapping window and all the entropy features were cal-
culated from that segment. This process continued until the
feature extraction for all the segments of all the records was
completed.

2) Feature importance calculation: To calculate feature
importance, the most common and popular statistical anal-
ysis was done using the error graph and Area Under the
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ROC Curve (AUC). Error graph was used to observe if
some features are good enough to separate seizure classes
from non-seizure one. Two types of analyses were done
based on AUC: channel-wise observation and patient-wise
observation. In channel-wise observation, AUC was used
to observe the effectiveness of one channel over another
in seizure detection. On the other hand, the patient-wise
observation investigated if some features were found that
can detect epileptic seizures regardless of the signal variation
across different patients. All the generated features for the
corresponding records were read and categorized as channel-
wise and patient-wise data groups. For channel-wise data,
the error graph was observed for the identification of the
important features based on class separability for all the
channels. Later, the observed features were verified with
their corresponding AUC values calculated for each channel.
Lastly, the selected features based on performance in the
previous steps were observed for patient-wise data to check
the consistency using AUC. Two main observations were
done to choose the best features and the best channel that
perform consistently across all the patients.

3) Features and Parameters:
The features considered for this study (DistEn, ShanEn,

RenEn and LempelZiv) are the entropy-based time domain
complex non-linear features.

a) Distribution Entropy: Distribution Entropy was initially
proposed to mitigate the parametric dependency of Approx-
imate entropy (ApEn) and Sample entropy (SampEn). These
were not robust enough, especially in the case of small data
sets. Later a novel entropy measurement technique based on
the distribution of distances between internal vectors in the
state space was introduced to deliver great robustness [14].

The simplified form of Distribution entropy (DistEn) can
mathematically be presented as follows:

D(X) =
1

logb(M)

M∑
i=1

P (xi) logb(P (xi)) (1)

Here X is any discrete random variable (signal segment in
this case) with possible values x1, x2, ..., xn and it is same
for eq.(1)-(3). The length of X is denoted by n. P (xi) =
Pr(X = xi) is the conventional probability mass function or
the probability that X has the value xi, where 0 ≤ P (xi) ≤
1. For the analysis of this study, the parameter ’base’ b is
set to 2 and bin size M = 500 as found promising in [15]
and this same setup was used in our experiment.

b) Shannon Entropy: Entropy is the measure of uncertainty
or randomness of a variable. In information theory, the
Shannon entropy (ShanEn) is the level of ”information”, or
”uncertainty” on average that is essential in the correspond-
ing random variable’s possible results [16]. For any signal X
of length n, with possible results x1, x2, ..., xn which occur
with probability P (x1), P (x2), ..., P (xn) the ShanEn of X
is formally defined as:

H(X) = −
n∑
i=1

P (xi) logb(P (xi)) (2)

For the analysis of this study, the parameter ’base’ b is set
to 2 to make it comparable with DistEn. Several studies
were conducted for epileptic seizure detection that used this
feature [15, 17].

c) Renyi Entropy: ShanEn is the most common method
of measuring information, but there are other similar ap-
proaches. Renyi entropy (RenEn) is a generalized version
of ShanEn that preserves the uncertainty and diversity
properties of a random variable to a certain extent [18]. The
RenEn is the basis of the idea of generalized dimensions
in fractal dimension estimation. The Rényi entropy of order
α, where α ≥ 0 and α 6= 1, is defined as

Hα(X) =
1

1− α
log

(
n∑
i=1

(Pi)
α

)
(3)

Here, the corresponding probabilities Pi
.
= Pr(X = xi)

for a signal X = x1, x2, ..., xn of length n. Following [4],
the convention for the value of the order α = 2 is used for
feature extraction.

d) LampelZiv Complexity: The LampelZiv Complexity
(LempelZiv) is used to determine the repetition complexity
of signals. The higher the LempelZiv value, the more
repetitive the signal [19]. To calculate LempelZiv, numeric
values from the segment (X) are encoded to symbolic
sequence (Y ) and then the distinct sub-sequences from that
sequence are searched for their repetition. For any symbolic
sequence of length n, c(n) denotes the complexity counter
or the length of the encoded sub-sequence. c(n) is increased
by one unit every time a new sub-sequence of consecutive
characters is encountered. At this time the number of differ-
ent sub-sequences in Y is c(n) [20]. Then the normalized
LempelZiv can be defined as-

Clz =
c(n) log2(n)

n
(4)

Repetition patterns are helpful in investigating signal
features sometimes. For experimentation, all other common
parameters were kept the same across all the features.

4) Statistical Analysis: For result analysis, popular graph-
ical and statistical measures like error graph and AUC were
used for all the features. AUC (Area Under the Receiver
Operating Characteristics) represents the measure of sep-
arability between different data classes. AUC implies the
measurement of importance of corresponding features in
classification. The higher value represents that the feature
is better in classification. AUC value from > 0.5 to closer
to 1.0 is considered as important but = 0.5 means that the
data is inseparable by that feature.

III. EXPERIMENTAL RESULT AND DISCUSSION

A. Analysis based on channels

The variation of mean and standard deviation (SD) is
shown in Fig. 1 for each of the features used; DistEn,
ShanEn, RenEn and LempelZiv, in classifying signal
segments with seizure from the non-seizure ones. Each
subplot of Fig. 1 shows the above mentioned variation for
each individual channel used in seizure detection.

1083



Fig. 1: Mean and SD (standard deviation) variation of feature values for seizure and non-seizure groups of signal segments.
Each subplot shows the variation in an individual EEG channel; (a) FP1-F7, (b) F7-T7, (c) T7-P7, (d) P7-O1, (e) FP1-F3,
(f) F3-C3, (g) C3-P3, (h) P3-O1 and (i) T7-FT9.

From visual inspection of Fig. 1, we can see that DistEn
shows similar mean, in fact almost close to being equal
mean values for seizure and non-seizure segments. And they
also have completely overlapping SD levels. This pattern can
be seen repeatedly in all the nine channels (all subplots of
Fig. 1). This would imply that the features, DistEn might
not be able to classify the two groups properly, across all
nine channels. But on the other hand ShanEn, RenEn
and LempelZiv show relatively higher variations in seizure
and non-seizure segments having significantly higher mean
value for seizure segments. They also have noticeable non-
overlapping SD levels which indicates the separability of
those features. In order to further validate our observation,
the AUC value of all features were calculated for each
channel and this is shown in Fig. 2.

As can be seen from Fig. 2, ShanEn, RenEn and
LempelZiv clearly outperforms DistEn in classifying
seizure from non-seizure segments. These features show a
consistently high AUC value (> 0.75), across all channels,
the highest being 0.82 corresponding to channel T7-P7.
Interestingly, ShanEn and LempelZiv are having same
average AUC level (overlapped dotted lines in the graph)
and all three features shows a similar pattern for all the
corresponding channels. DistEn is an exception found here
in the graph showing a moderate level of consistent AUC

across all the channels with the average AUC value of 0.68.

Fig. 2: Variation of AUC with EEG channels. AUC values
correspond to each entropy feature: DistEn, ShanEn,
RenEn and LempelZiv.

B. Analysis based on patients

Although ShanEn, RenEn and LempelZiv showed
comparable performance for epilepsy detection, ShanEn
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and LempelZiv are found to be the best features across
all nine channels. To further investigate the capacity of these
features, we perform a subject-wise analysis on channel T7-
P7, which showed the maximum AUC values for ShanEn,
RenEn and LempelZiv features. Fig. 3 shows the AUC val-
ues of the three best performing features, ShanEn, RenEn
and LempelZiv for the channel T7-P7 for individual subject.

The observation that can be made from Fig. 3 is that there
is a strong inter-subject variability in the performance of
studied entropy features. This indicates the need for multi-
channel sEEG signal in developing generalised model for
seizure detection. All three features have shown similar
pattern of variation across all subjects and their mean and
standard deviation of AUC further supports this observation
(see TABLE I). This means, there is no single feature that
is standing out from others.

IV. CONCLUSION

Entropy is a nonlinear measure of irregularity or chaos
present in a signal. Entropy methods are largely used for di-
agnostic information retrieval from physiological signals like
ECG and EEG. In this study, we analyze and compare the
performances of a set of entropy methods; namely DistEn,
ShanEn, RenEn and LempelZiv to extract information
for epileptic seizure detection from sEEG signals. RenEn,
ShanEn and LempelZiv methods show high potential to
be used for accurate ES detection from EEG, across multiple
sEEG channels.
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