
  

  

Abstract— In previous work, we developed an exoskeleton 

(HandSOME II) that allows movement at 15 hand degrees of 

freedom (DOF) and is intended for take-home use. An activity 

tracking device was developed in order to track index finger 

movement with a pair of magnetometers and magnet. The goal 

was to detect grip attempts by the individual. Machine learning 

was utilized to estimate angles for metacarpophalangeal (MCP) 

and proximal interphalangeal (PIP) joints at the index finger. 

Testing was performed with healthy control and individuals with 

stroke.  

 
Clinical Relevance— This device and method of data 

collection during daily activities might be useful for stroke 

rehabilitation and compliance with home-based therapy 

programs. 

I. INTRODUCTION 

Stroke motor rehabilitation of the upper extremity is 

motivated by mass task practice. Measuring someone’s motor 

activity of the impaired limb while at home is essential 

information. The current standard to estimate spontaneous use 

of the extremity is the Motor Activity Log (MAL)[1]. 

However, the MAL is based on self-reported data that relies 

on memory and comprehension of the subject.  

Exoskeletons can be effective for improving rehabilitation 

training during mass task practice. Take-home devices allow 

more practice time in natural environments that may promote 

spontaneous use of the impaired limb. There are several 

passive commercial hand exoskeletons available (SaeboFlex, 

SaeboGlove), however none provide monitoring of activity 

level of the impaired hand.  

Our lab previously designed and tested the lightweight, 

passive, and portable HandSOME I device that was designed 

for pinch-pad grasp by bringing the pads of the thumb and 

fingers together [2].  Using similar principles, we 

subsequently designed HandSOME II (Fig. 1), a more 

complex exoskeleton with 10 elastic bands that assist 15 

DOFs in the fingers and thumb.  Full details on the 

HandSOME II mechanical design have been reported 

previously [3]. We present a method of measuring movement 

of the index finger while wearing the HandSOME II, thereby 

promoting compliance with home training programs. 

 
This work was supported by the National Institutes of Health under grant 

R21HD088783 and by the Dept. of Health and Human Services (NIDILRR 

RERC) under grant 90REGE0004. 

R. Casas is with the Biomedical Department of The Catholic University 
of America, Washington, DC 20064 USA (e-mail: casas@cua.edu).  

II. METHODS 

A. Electrical design 

In order to obtain activity data when the subjects use 
HandSOME II in their home training, we developed a data 
logging system to record index finger motion. Index finger 
movement is a part of almost all grasp types and it was not 
practical to instrument all of the digits because of space 
limitations. Additionally, there was not enough space to mount 
an encoder or potentiometer on the PIP joint.  Instead, we used 
a pair of magnetometers (Adafruit, LSM303DLHC & 
Sparkfun, Mag3110) and a permanent disc-shaped magnet, to 
record the movement of the index finger with data logging 
performed by a microcontroller (Adafruit Feather M0 
Adalogger) placed on the back of the hand (Fig 1).  

The magnet was permanently bonded to the PIP and distal 

interphalangeal joint (DIP) finger linkage so that movement 

of either the PIP or MCP would rotate the magnet relative to 

the sensors (Fig. 2).  The magnetic field strength from the 

magnet measured by the closer magnetometer is comparable 

to earth’s magnetic field, so a second magnetometer was 

spaced further back on the hand to only measure the effect of 

earth’s magnetic field.  The two magnetometers are attached 

to the same rigid body and so should record the same 

magnetic field strength due to earth’s field in all 3 axes. 

Theoretically, the difference between the two magnetometer 

signals, once calibrated, would be purely due to the position 

and orientation of the magnet relative to the closer 

magnetometer.  

 

 

Figure 1.  HandSOME II device with magnet activity tracker.  
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For a take-home design, a lithium Battery, mini SD card, 

on-off switch, microprocessor, and second magnetometer are 

enclosed in a box bolted to the wrist splint on the back of 

hand. Data was recorded to a SD card and processed offline. 

Total device weight was 51.4 g plus the weight of the magnet. 

Primary data analysis focused on measuring flexion/extension 

activity and frequency of use. Wrist measurements were not 

recorded as the splint on the back of the hand was rigid and 

restricted wrist movement.  The sampling frequency of the 

magnetometers was 160 Hz (LSM303DLHC) and 80 Hz 

(Mag3110). 

 

Figure 2.  CAD drawing showing location of both magnetometers and the 

location of the magnet during finger flexion and extension. 

B. Data collection and Processing 

During subject testing (IRB 19-0058), the system was 

powered on and tethered to a computer through a USB cable.  

While the system is capable of running entirely on battery 

power and storing data to the SD card, we performed 

experiments in the lab using USB data transfer so that data 

could be viewed continuously during the experiment. A 

Matlab script collected triaxial readings from both 

magnetometer sensors for 45 seconds. Typical magnetometer 

readings are shown in Figure 3 as a subject performs reach 

and grasp tasks with blocks. During a time span of 45 seconds, 

the subject attempts to make multiple grasping efforts. 

Data was processed and analyzed using Matlab. The script 

begins by calibrating the 2 sensors with trials where the arm 

is rotated but the finger was held extended, so that changes in 

the magnetometer readings were due to rotation of the device 

relative to earth’s magnetic field.  The goal of the calibration 

was to transform the data from the far sensor so that data from 

both sensors are identical values during these trials.  The data 

from the far sensor was transformed via a multivariable 

regression, to remove differences in sensor sensitivity and any 

misalignment of the two sensors.  The near sensor and 

transformed far sensor data then were subtracted to yield 3 

differential x, y and z signals that were insensitive to arm 

movement.    The model for the regression was: 

 

Mf = A + B*Mn 

 

Where Mf and Mn are 3x1 vectors of triaxial readings from 

the far and near magnetometers, respectively.  A is a 3x1 

vector of constants and B is a 3x3 matrix of unknown 

coefficients.  A and B were estimated by multivariable 

regression.  A 5 min trial was recorded of continuous arm 

movement in all planes, and the mean error after calibration 

for the three axes were 13.9(14.4), 11.6(12.2) and 9.8(9.9) 

ADU.  The range of values for this data was 959, 749 and 975 

ADUs for the 3 axes, respectively. Thus the error was 1.5, 1.6 

and 1.0% of the full range for the three axes, respectively.  

Fig. 3 shows an overlay plot of a typical section of data for 

the 2 magnetometers after calibration.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.  X-axis data from magnetometers during arm movements after 

transformation of the far sensor data. Sensitivity to arm movements are 

essentially eliminated by this calibration method. 

  

   A method was developed to detect the number of finger 

movements (Fig. 4).  Differential x, y and z signals were 

smoothed with a Butterworth filter (.5 Hz cutoff).  Peaks in 

the differential signals were clearly distinguishable when the 

finger rotates in the exoskeleton. We focused on changes in x 

and y axes and their combined magnitude (Euclidean norm) 

because these axes were most sensitive to finger movement.  

The “findpeaks” Matlab function was used, and the settings 

for peak width and peak prominence were empirically 

determined that best captured all of the movements, while 

rejecting noise in the data.  A minimum peak width of 3 

samples and a minimum peak prominence of 59 ADU units 

were used on the combined x & y data stream.  X-axis data 

was processed with peak width of 3 samples and peak 

prominence of 38 ADU units. Y-axis data was processed with 

peak width of 6 samples and peak prominence of 49 ADU 

units.  

        
Figure 4. Differential magnetometer readings as a subject performs reach and 

grasp task with 2 in. block. Red Line: Subject is wearing exoskeleton. Blue 

Line: Subject is wearing the wrist splint, but human finger is not placed in 

the linkage, which is fixed into an extended position, guaranteeing there is no 

movement of the finger exoskeleton. The triangles mark the grasping 

movements as detected by the algorithm.     
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C. Testing and Validation Procedure 

The unit was tested on 3 healthy and 3 stroke subjects 

(Table 1) to identify the accuracy of the activity tracker for 

subjects of various hand sizes while they perform various 

reach and grasp tasks while wearing HandSOME II. Objects 

were of various sizes and included: 1 inch wood block, 2-inch 

wood block, 3 inch wood block, marble, marker, and key.  

Two 45-sec trials of each object were performed while sitting 

down and standing.  The goal was to determine if the 

algorithm could discriminate finger movements from several 

common arm movements, such as arm swing during walking, 

waving, etc. Trials were video recorded, and a human 

annotator marked the video when finger movement occurred 

to establish a ground truth for number of grip attempts. Small 

movements in the video that showed little change in magnetic 

readings were excluded. 

 
Table 1: Stroke Subjects 

Subject Age Gender Time 

Since 

Stroke 

(Months) 

FM 

(UL) 

ARAT 

1 53 F 62.5 28 4 

2 71 F 10.6 52 39 

3 66 M 72.1 43 38 

 

D. Machine Learning Prediction 

We also attempted to predict the MCP and PIP joint angles 

of the index finger using a machine learning approach similar 

to a previous study [4].  A test rig was built with 2 

potentiometers that attached to the index finger exoskeleton 

and measured the MCP and PIP angles, while simultaneously 

recording data from the two magnetometers.  The input to the 

models was the 3 differential magnetometer values, and the 

outputs were MCP and PIP angles.  On 2 separate days, the 

experimenter performed 5 minutes of random movements of 

the index finger and hand rotations (30Hz data rate).  The 

models were trained on 85% of Day 1 data and tested on the 

remaining 15% (randomly selected).  The Day 1 model was 

also applied to Day 2 data.  We used a two-layer feed-forward 

neural network with 25 hidden neurons and linear output 

neurons (Matlab Statistics and Machine Learning Toolbox). 

III. RESULTS 

A. Grip Attempts Estimation 

The number of grip attempts in the video were summed and 

compared to the summed number of grips identified by the 

activity logger (Table 2). The combined magnitude of x and y 

showed the highest accuracy overall.  Percentage error of 

peak identification was calculated as the grip attempts from 

video annotation minus the grips from the magnetometer data, 

all normalized by the grips from video annotation. Trials were 

not analyzed when the object being gripped was dropped 

several times, as the finger movements were difficult to pick 

out in the video of these trials. Two 45-second trials were 

performed by healthy controls waving and rotating their arm 

continuously with their fingers held straight (2 trials while 

sitting and 2 trials while standing).  Miscounts are provided 

in Table 1 for the amount of times the activity logger 

misidentified grips during these trials.   

 
Table 2. Movement Tracking Summarized Results. 

Subject 

 Grips 

(Magnetic 

Sensor) 

Grips 

(video) 

% 

Error 

Arm Waving 

Miscounts 

(Sitting/Standing) 

Control 1  140 140 0.00 (0/1) 

Control 2 141 141 0.00 (1/1) 

Control 3 140 134 -4.29 (1/2) 

Stroke 1 122 116 -4.92 - 

Stroke 2 76 84 10.53 - 

Stroke 3 80 89 11.25 - 

 

A. Machine Learning Angle Estimation 

 

 
Figure 5.  Neural network model predictions on Day 1 and Day 2 data. 

. 

 

The machine learning algorithm was able to predict joint 

angles on Day 1 with good accuracy.  RMS error was 3.2 and 

1.9 degrees for the MCP and PIP joints respectively, and r2 

values > .98.  However, RMS error increased at both joints 

when the model based on Day 1 data was applied to Day 2, 

suggesting regular re-training of the models is needed (Fig. 

5).  While the plots in Fig. 4 report joint accuracy separately, 

it’s important to note that the movement data for these 

experiments included some isolated joint rotations as well as 

simultaneous rotation of both finger joints, all synchronous 

with arm movements in different planes.   

IV. DISCUSSION 

For activity tracking, similar designs have been explored.  

Ma in 2011 reported on a system consisting of a wrist band 

with multiple magnetic sensors and a magnet at the fingernail 

[5]. They showed that by incorporating a kinematic model, 

the finger posture could be calculated.  Using a similar 

principle, Simmons in 2013 showed that by placing a 
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magnetic sensor on each of the finger segments and a single 

magnet at the base of the finger, all three joint angles of the 

finger could be estimated [6].  Rowe fielded a system similar 

to our design consisting of 2 triaxial magnetometers on the 

wrist and a magnetic ring on the index finger [4].  The system 

could estimate wrist flexion/extension, radial/ulnar deviation, 

and finger flexion about the MCP.  They reported 95% of 

estimated finger flexion/extension estimates were within 4.7 

degrees of their actual values.  Similar to their results, we also 

found errors in angle predictions increased over time and 

daily recalibration would be needed to accurately track joint 

angles over extended periods [7].   

For the goal of tracking number of movements, our method 

seems promising. With control subjects, the algorithm was 

able to detect gripping movements for a range of objects 

(marble to 2 in block) with small errors.  The algorithm also 

effectively rejects arm movements that have no finger 

movement.   The tracking monitor was also tested with stroke 

patients. The challenges are that stroke subjects can have 

much slower and smaller gripping motions that are more 

difficult for the algorithm to identify. We showed a mean 

error of 8.9% in the 3 stroke patients tested.  Further testing is 

needed to determine if this error level is acceptable for clinical 

testing.   The device weight did not seem to hinder lifting the 

arm sitting or standing. However, for more severe patients the 

weight of the device may be an issue. All three stroke subjects 

had prior experience donning the device. They previously 

participated in a separate study that required donning 

independently.  

Limitations of the device include the fact that the device is 

currently limited to one finger and cannot be easily extended 

more fingers. In lab testing, were able to estimate number of 

grip attempts and finger joint angles with good accuracy. 

During home use, it will be difficult to estimate the exact type 

of grip or activity being done with just grip attempts and angle 

estimations.  Further sensors and improved classification 

algorithm will be needed. Additionally, daily retraining of the 

machine learning model may be needed for consistent 

estimate of joint angles. Alternatively, if the cause of the 

decrease in accuracy over time can be further studied, it might 

be possible to compensate for changes without the need for 

collection of new data using the test rig we used in the lab.  

However, we do expect grip counts will be accurate over time, 

as the same algorithm was used across multiple subjects over 

several days in the testing results reported in Table 1.  

Recalibration of sensors for the grip counts method would 

only require a trial of moving the arm about in different 

directions without finger movement.   Additionally, it is well 

known that proximity to sources of magnetic fields, such as 

large metallic objects or surfaces, interfere with the device 

and cause large inaccuracy.  

 

 

 

V. CONCLUSION 

We have developed an activity tracker for a hand 

exoskeleton.  Use of the device would allow tracking of finger 

activity when the user is at home. The design of the system 

allows use in tight spaces and constrained areas and does not 

significantly increase the size or weight of the exoskeleton. 

Data can be useful for clinicians to correlate improvements in 

motor ability with adherence to home training programs that 

emphasize highly repetitive movement practice.   Future work 

will consist of extended home training with the activity 

tracker.  
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