
Slant-Stack Migration Applied to Plane-Wave Ultrasound Imaging

Daler Rakhmatov

Abstract— Ultrafast plane-wave ultrasound imaging replaces
numerous focused-beam transmissions with a single emitted
plane-wave pulse, insonifying the entire subsurface region of
interest all at once. To improve image quality, one can employ
coherent plane wave compounding (CPWC), whereby several
pulses are emitted sequentially at different steering angles, and
their corresponding acquired raw data frames are individually
beamformed and then combined to form a final reconstructed
image frame. We describe a classic geophysical reconstruction
technique called slant-stack migration, adapted here to CPWC
imaging. Our evaluation results, based on two public-domain
datasets featuring both anechoic and hyperechoic targets,
demonstrate that the presented approach compares favorably
with conventional delay-and-sum beamforming.

Clinical relevance— Plane-wave ultrasound imaging allows
for raw data acquisitions at very high frame rates, thus enabling
accurate characterization of fast dynamics of blood or tissue
motion. High quality of CPWC images reconstructed from raw
data contributes to making appropriate clinical decisions.

I. INTRODUCTION
Plane-wave ultrasound imaging, where a few plane-wave

emissions replace a multitude of focused-beam transmis-
sions, makes it possible to acquire raw data frames at a very
high rate. It offers increased temporal resolution, which en-
hances ultrasound-based diagnostic capabilities in such areas
as Doppler imaging and shear-wave elastography [1]. Typi-
cally, one uses several plane-wave pulses emitted at different
steering angles, which yields several raw data frames. They
are individually beamformed, and then their corresponding
complex-valued beamformed frames are combined to obtain
a final reconstructed image frame. This process is known as
coherent plane wave compounding (CPWC) [2].

The focus of this work is on CPWC image reconstruction
using so-called slant-stack migration, a technique originating
from the geophysical literature (e.g., see [3]). It has been
adapted here to plane-wave data processing as a viable alter-
native to conventional delay-and-sum (DAS) beamforming.

The original slant-stack migration method relies on the 2D
scalar wave equation[

∂2

∂x2
+

∂2

∂z2

]
P (t, z, x) =

1

v̂2
∂2

∂t2
P (t, z, x), (1)

where t represents time, P (t, z, x) is the wavefield in 2D
spatial coordinates z (axial) and x (lateral), and v̂ = c/2 is a
one-way propagation velocity that arises from the exploding
reflector model (ERM) setting [3], [4]. The latter means that
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we ignore the downgoing pulse propagation delays from the
surface transmitters (located at z = 0) to some reflector at
depth z > 0, and instead let the upgoing echoes from that
reflector travel back to the surface receivers at half-speed
c/2. Then, we can assume that reflectors “explode” at time
t = 0, forming a wavefield described by (1). The resulting
signals (i.e., received echoes caused by a transmitted pulse)
are recorded as P (t, 0, x) by the surface receivers along the
x-axis. Given a raw dataset P (t, 0, x), the goal of migration
is to reconstruct an image dataset P (0, z, x), revealing a 2D
reflectivity map of the insonified medium section.

We have the following classic result (e.g., see [3], [4]):

P (0, z, x) =

∫∫
v̂2k2x<f

2

Ψ(f, 0, kx)ej2π(kzz+kxx)dfdkx, (2)

where kz = (f/v̂)
√

1− (v̂kx/f)2 subject to v̂2k2x < f2, and
Ψ(f, 0, kx) is the Fourier transform of P (t, 0, x) with respect
to t and x. Introducing the slant parameter px = kx/f yields

P (0, z, x) =

∫∫
v̂2p2x<1

|f |Ψ(f, 0, fpx)ej2πfτ(z,x,px)dfdpx, (3)

where τ(z, x, px) = pxx + (z/v̂)
√

1− (v̂px)2 subject to
v̂2p2x < 1. Next, we note that

Ψ(f, 0, fpx) =

∫
Φ(f, 0, x)e−j2πfpxxdx, (4)

where Φ(f, 0, x) is the Fourier transform of P (t, 0, x) with
respect to t. Finally, we let

Φ(t, 0, px) =

∫
|f |Ψ(f, 0, fpx)ej2πftdf (5)

and obtain

P (0, z, x) =

∫
v̂2p2x<1

Φ(pxx+ (z/v̂)
√

1− (v̂px)2︸ ︷︷ ︸
t=τ(z,x,px)

, 0, px)dpx.

(6)
In other words, computing P (0, z, x) involves interpolating
Φ(t, 0, px) along the t-axis using τ(z, x, px) and then inte-
grating over px (slant stacking).

The next section describes how one can modify slant-stack
migration outlined above, so that it can be used for CPWC
image reconstruction. We let θ denote the steering angle of
a plane-wave pulse, and in the sequel, we attach subscript θ
to all symbols representing angle-dependent quantities (Pθ,
Ψθ, Φθ, Φθ, τθ).
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II. PROPOSED METHODS

Fig. 1 provides a simple geometric illustration of the main
idea behind our proposed methods. When the transmitted
pulse wavefront W ∗ reaches a reflector R located at some
(z, x) coordinates, R “explodes”, thus generating an echo
signal that travels back to the surface (see Fig. 1). We assume
that the echo propagation velocity is c (the speed of sound in
the imaged medium), as opposed to v̂ = c/2. Consequently,
the transmitted pulse propagation delay can no longer be
ignored and must be accounted for explicitly.
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Fig. 1. Geometric illustration.

Since the travel distance between W ∗ and R is z cos(θ),
the pulse delay in question equals z cos(θ)/c, which can be
accounted for by introducing the corresponding phase shift
exp(j2πfz cos(θ)/c). As a result, we get new

τθ(z, x, px) = pxx+ (z/c)
[
cos(θ) +

√
1− (cpx)2

]
. (7)

We still need additional modifications, as the true transmitted
pulse wavefront is W (crossing x = 0 in Fig. 1), i.e., not W ∗

aligned with the x-coordinate of R. Hence, we consider two
options: 1) applying depth corrections after slant stacking,
or 2) introducing additional delays before slant stacking.

The first option implies interpolating Φθ(t, 0, px) using
t = τθ(z, x, px) given by (7). Subsequent integration over px
produces Pθ(0, z̄, x), where the preliminary z̄-coordinates of
reflectors must be corrected to their true z-coordinates. As
z = ct/2, the corresponding depth adjustments are given
by ∆z = c∆t/2, where c∆t = x tan(θ) is the extra travel
distance between points (0, x) and C (see Fig. 1). Thus, we
have z = z̄ + x tan(θ)/2. The resulting plane-wave slant-
stack migration method, abbreviated as PWSSa, is outlined
below.

PWSSa Method

1. Compute Φθ(f, 0, x) by applying the 1D Fourier trans-
form to Pθ(t, 0, x) with respect to t. Select a set of px
values subject to c2p2x < 1. Initialize Pθ(0, z̄, x)← 0.

2. For each px perform the following two steps:
i) Multiply Φθ(f, 0, x) by exp(−j2πfpxx) and sum over
x. Multiply the result by |f | and then apply the 1D
inverse Fourier transform with respect to f , which yields
Φθ(t, 0, px).

ii) For each x, compute τθ(z, x, px) using (7). Determine
Φθ(τθ(z, x, px), 0, px) and add it to Pθ(0, z̄, x).

3. Let Pθ(0, z, x)← Pθ(0, z̄ + x tan(θ)/2, x).

The second option implies introducing an additional phase
shift exp(j2πfx sin(θ)/c), where x sin(θ)/c represents the
propagation delay between the pulse wavefronts W and W ∗

(see Fig. 1). Consequently, we obtain adjusted

τ ′θ(z, x, px) = x sin(θ)/c+ τθ(z, x, px), (8)

to be used when interpolating Φθ(t, 0, px) prior to integration
over the slant variable px. The resulting plane-wave slant-
stack migration method, abbreviated as PWSSb, is outlined
below.

PWSSb Method

1. Compute Φθ(f, 0, x) by applying the 1D Fourier trans-
form to Pθ(t, 0, x) with respect to t. Select a set of px
values subject to c2p2x < 1. Initialize Pθ(0, z, x)← 0.

2. For each px perform the following two steps:
i) Multiply Φθ(f, 0, x) by exp(−j2πfpxx) and sum over
x. Multiply the result by |f | and then apply the 1D
inverse Fourier transform with respect to f , which yields
Φθ(t, 0, px).

ii) For each x, compute τ ′θ(z, x, px) using (8). Determine
Φθ(τθ(z, x, px), 0, px) and add it to Pθ(0, z, x).

The asymptotic complexity of both PWSSa and PWSSb
methods, dominated by step 2, is O(ntnxnp) per angle θ,
where np is the number of slants in use, and nt × nx is the
size of the 2D input Pθ(t, 0, x).

It is important to mention that PWSSa closely resembles
another slant-stack method reported in our earlier work [5].
We briefly discuss their relationship in the next section that
presents our evaluation results.

III. EVALUATION RESULTS

To assess the slant-stack migration methods described in
the previous section, we have used two experimental datasets
provided by the PICMUS evaluation framework [6], [7].
This framework also provides a reference implementation of
conventional DAS beamforming with different apodization
windows – we have used two of them: Tukey-25% (with the
1/4 cosine fraction) and Boxcar. These baseline beamformers
are referred to as DAS1 and DAS2, respectively.

The first dataset, labeled TYPE-1, features two anechoic
cyst targets and one hyperechoic wire target. The second
dataset, labeled TYPE-2, features seven hyperechoic wire
targets. In both cases, the raw datasets are of size 1536×128,
while the reconstructed image datasets are of size 1536×384
(i.e., upsampled by the factor of 3 along the x-axis). Ex-
amples of the TYPE-1 and TYPE-2 CPWC B-mode images
obtained using DAS1 are shown in Fig. 2 and Fig. 3.1 For

1The dynamic range of all displayed B-mode images is 60 dB.
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Fig. 2. TYPE-1 CPWC images, DAS1: 1 PW (left), 19 PWs (right).
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Fig. 3. TYPE-2 CPWC images, DAS1: 1 PW (left), 19 PWs (right).

evaluation purposes, we have considered two representative
cases: 1) a single plane-wave emission having θ = 0◦ (left-
side images), and 2) nineteen plane-wave emissions having
uniformly spaced θ values from −16◦ to +16◦ (right-side
images).

In addition to DAS1 and DAS2, we compare the perfor-
mance of our PWSSa and PWSSb methods with2

• Temme-Mueller migration [12], referred to as TM,3

• Modified Stolt’s migration from section IV.A of [5],
referred to as method A,

• Modified slant-stack migration from section IV.B of [5],
referred to as method B.

For PWSSa, PWSSb, and B, we have used the slant spacing
∆px = 1/(fmaxnx∆x), where ∆x is the transducer element
spacing, and fmax is the maximum frequency of our Fourier
grid. As for the number of slants, we have considered two
settings: 1) np = 130, generating px ∈ [−0.3/c,+0.3/c]
(used in PWSSa1, PWSSb1, and B1), and 2) np = 260, gen-
erating px ∈ [−0.5/c,+0.5/c] (used in PWSSa2, PWSSb2,
and B2). Examples of the TYPE-1 and TYPE-2 CPWC B-
mode images obtained using PWSSb1 are shown in Fig. 4
and Fig. 5.

2Other representative works, such as [8]–[11], are not covered here. Their
key features and relative performance are discussed extensively in [5].

3It appears that Temme-Mueller migration have been overlooked in the
ultrasound literature. This method is evaluated here for the first time.
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Fig. 4. TYPE-1 CPWC images, PWSSb1: 1 PW (left), 19 PWs (right).
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Fig. 5. TYPE-2 CPWC images, PWSSb1: 1 PW (left), 19 PWs (right).

Our performance evaluations rely on the following PIC-
MUS image quality indicators [6]:
• Contrast-to-noise ratio (CNR) values, associated with

the two anechoic cyst targets that appear as dark disks
in the TYPE-1 images,

• Full-width at half-maximum (FWHM) values, associ-
ated with the hyperechoic wire targets that appear as
bright points the TYPE-1 (one near the bottom cyst) and
TYPE-2 (seven in a cross-shaped alignment) images.

Tables I and II list our measurements, where FWHM denotes
the FWHM values averaged over all seven wire targets under
consideration in the TYPE-2 images. It should be noted that
in the special case of a single plane-wave emission (i.e., for
θ = 0◦), the migration equations of methods TM and A
become identical, thus producing identical results; the same
is true for methods PWSSa, PWSSb, and B.

In Table I, methods TM and A offer the best CNRTop = 8.6
dB for the top cyst as well as the best CNRBottom = 7.6 dB
for the bottom cyst. The same CNRBottom is also produced by
methods PWSSa2, PWSSb2, and B2. These three methods
yield the best FWHMLateral (measured horizontally along the
x-axis), equal to 0.805 and 0.748 mm for the TYPE-1 and
TYPE-2 images, respectively. Methods TM and A produce
the best FWHMAxial (measured vertically along the z-axis),
equal to 0.487 and 0.486 mm for the TYPE-1 and TYPE-2
images, respectively.
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TABLE I
IMAGE QUALITY INDICATORS: SINGLE PLANE WAVE, θ = 0◦ .

TYPE-1 TYPE-2
Method Top/Bottom Axial/Lateral Axial/Lateral

CNR (dB) FWHM (mm) FWHM (mm)

DAS1 [6] 8.4/7.1 0.487/0.970 0.488/0.962

DAS2 [6] 7.6/6.1 0.487/0.902 0.490/0.876

TM [12]
8.6/7.6 0.487/0.844 0.486/0.791

A [5]

B1 [5]
PWSSa1 8.2/6.8 0.494/0.863 0.489/0.791

PWSSb1

B2 [5]
PWSSa2 7.8/7.6 0.491/0.805 0.490/0.748

PWSSb2

TABLE II
IMAGE QUALITY INDICATORS: 19 PLANE WAVES, θ ∈ [−16◦,+16◦].

TYPE-1 TYPE-2
Method Top/Bottom Axial/Lateral Axial/Lateral

CNR (dB) FWHM (mm) FWHM (mm)

DAS1 [6] 13.1/11.5 0.487/0.630 0.486/0.603

DAS2 [6] 12.8/11.5 0.487/0.601 0.486/0.578

TM [12] 11.0/11.8 0.491/0.543 0.490/0.518
A [5] 12.5/12.2 0.487/0.504 0.482/0.463

B1 [5] 13.2/11.1 0.491/0.582 0.487/0.549

PWSSa1 13.2/11.5 0.491/0.582 0.486/0.539
PWSSb1 13.3/11.4 0.491/0.582 0.484/0.542

B2 [5] 11.8/11.5 0.491/0.504 0.489/0.522
PWSSa2 12.0/11.8 0.491/0.485 0.488/0.484

PWSSb2 11.9/11.9 0.494/0.524 0.487/0.508

Table II shows no appreciable changes in the axial FWHM
values relative to those listed in Table I, but the CNR and lat-
eral FWHM values improve significantly in all cases, which
illustrates the benefit of multi-angle coherent compounding.
The best CNRTop = 13.3 dB and CNRBottom = 12.2 dB are
produced by PWSSb1 and A, respectively. The second-best
CNRTop and CNRBottom are due to PWSSa1 (tied with B1)
and PWSSb2, respectively. For the TYPE-1 images, PWSSa2

offers the best FWHMLateral = 0.485 mm, followed by A
(tied with B2) giving the second-best lateral FWHM value.
For the TYPE-2 images, A produces the best FWHMLateral =
0.463 mm, followed by PWSSa2 offering the second-best
lateral FWHM value.

According to Table II, our proposed methods PWSSa and
PWSSb perform better than method B [5] in most cases. As
mentioned earlier, PWSSa closely resembles B, except for
a relatively small but important difference: PWSSa uses (7)
for τθ(z, x, px), whereas B uses

τθ(z, x, px) = pxx+ z
1 + cos(θ)

2c

[
1 +

√
1− (cpx)2

]
, (9)

which arises due to a slightly different modeling approach
employed in [5].

Tables I and II show that both PWSSa and PWSSb give
consistently better (e.g., up to 23% smaller) FWHMLateral in
comparison with DAS beamforming. While the latter gives
better FWHMAxial, the difference between the best and worst
values is only 2% across all evaluated methods. On average,
DAS beamforming and our slant-stack migration yield very
similar CNR values (e.g., 12.2 dB vs. 12.1 dB in Table II).

IV. CONCLUSIONS
We have presented two plane-wave ultrasound image re-

construction methods, abbreviated as PWSSa and PWSSb,
that are based on a geophysical slant-stack migration tech-
nique. Our evaluation results indicate that these methods gen-
erally outperform conventional DAS beamforming in terms
of measured lateral FWHM values, and in some cases, giving
better CNR values as well. The computational complexity
of slant-stack migration is linearly dependent on the number
of slants; however, using more slants does not necessarily
improve the image quality (e.g., FWHMLateral became better,
but CNRTop became worse). The main disadvantage of slant-
stack migration is its inferior computational speed in compar-
ison with frequency-wavenumber migration (e.g., methods A
[5] and TM [12] mentioned in the previous section, as well as
those reported in [8], [9], [11]). Further research in this area
should investigate various opportunities for accelerating the
execution of slant-stack migration and explore its extensions
to plane-wave imaging of inhomogeneous media [13].
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