
  

  

Abstract— In this work, we present the results of a 
comparison of simple artificial neural network (FFNN) designs 
intended to identify infant bottle-feeding events and appropriate 
feeding volume recording intervals using accelerometer data 
recorded from a custom designed “Smart Bottle” system.  To 
properly identify and distinguish these events with an accuracy 
of 99.8%, while accommodating the constraints of the 
deployment environment, two concurrent FFNNs were 
implemented. 
 

Clinical Relevance— Infant feeding patterns are highly 
correlated with obesity in adulthood; the Smart Bottle system 
presents an opportunity to collect accurate data with minimal 
disruption to the feeding interaction. 

I. INTRODUCTION AND BACKGROUND 

A. Infant Feeding Behavior and Impacts 
Rapid weight gain during infancy is a significant predictor 

of risk for later obesity and metabolic comorbidities [1]. One 
of the earliest modifiable contributors to rapid weight gain is 
overfeeding during bottle-feeding. Compared to infants fed 
directly from the breast, infants fed by bottle gain an excess of 
70-90 grams/month across the first year postpartum and have 
higher weight status by age 2 years [2] [3] [4] . Observational 
research suggests both how much and how often bottle-fed 
infants are fed are associated with overfeeding and excess 
weight gain [5] [6] [7] [8]; thus, accurate measurement of feed 
volume and frequency are important outcome measures for 
interventions aimed at reducing risk for overfeeding during 
bottle-feeding.  

B. Data Collection on Feeding Events 
The current gold standard for assessing infant intake in 

research and clinical settings involves weighing the infant 
before and after each feeding within a controlled laboratory or 
clinical setting. While effective, it is difficult to collect long 
term data on feeding patterns using this method, and these 
settings may alter infant feeding behaviors. An alternative 
approach is to ask parents to keep detailed feeding diaries. 
Although more feasible for longer-term tracking of infant 
dietary patterns, this approach imposes significant participant 
burden since young infants typically feed between 8-12 times 
per day and often feed at times when parents’ cognitive 
capacity may be limited, such as in the middle of the night or 
while caring for other children. Indeed, missed recordings and 
errors in recording are common and parent-reported feeding 
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records tend to overestimate infant intakes by 10-23% [9] [10] 
[11] [12].  

Recently, specifically-designed, research-grade bottle 
systems have been developed to automatically record feeding 
data [13] [14], but these tools are limited because they 
specifically focus on objective measurement of infant sucking, 
do not provide additional data on feed volume, and may 
negatively impact feeding interactions because dyads are 
required to use unfamiliar bottles and nipples for assessment. 
One possible approach to address these methodological 
limitations is to develop an electronic device that could attach 
to a variety of bottles, achieving remote recording of 
experimental data without altering the feeding interaction.  

C. The “Smart Bottle” Approach 
We have developed such a system to record feeding times, 

volumes, and other data using a microcontroller-controlled 
sensor array and enclosure that attaches to the base of an infant 
bottle (Figure 1). The details of the “Smart Bottle” device 
hardware are not discussed here, but as part of the data-
collection algorithm it is necessary to identify two key states: 
i) feeding state, when the bottle is being used, and ii) post-
feeding state, when the bottle has been set down and formula 
volume data should be recorded.  

D. Artificial Neural Network 
We report the development of an artificial neural network 

(FFNN) algorithm to interpret “real-time” data from sensors in 
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Figure 1: Smart Bottle system in use during simulated feeding event. 
The black base attached to the bottle contains sensor hardware and 
microcontroller for data acquisition. 
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a Smart Bottle device attached to an infant bottle. The FFNN 
approach was chosen as the best approach to analyze data from 
multiple sensor sources and classify the bottle state as either 
“feeding” or resting “on [a] table.”  

An FFNN is an algorithm consisting of one or more 
weighted input values (𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖) and biases (𝑏𝑏) that are evaluated 
using an activation function (𝜑𝜑) at a particular node as shown 
in 1 

 𝑂𝑂𝑂𝑂𝑂𝑂 = 𝜑𝜑(∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑏𝑏)  1 

Nodes are arranged in layers that are evaluated 
sequentially. Output from nodes in each layer are fed forward 
into the next layer, adding complexity to the FFNN model. 
Determination of the weighting factors for each input, and for 
the feedforward between each layer is achieved using a 
training algorithm and multiple training datasets. There are 
many such techniques; here we use the Levenberg-Marquardt 
technique to perform non-linear least squares regression 
analysis to determine weighting factors and biases.  After 
training, the determined weights can be implemented in the 
final network. 

The development of the FFNN algorithm for classification 
of “feeding” and “resting” events must operate within the 
constraints of the microcontroller (ATMega 32u4) 
environment which is limited to 32KB program variable space 
and 20Hz data acquisition rate. Future work will improve upon 
these constraints.  

II. METHODS 

A. Sensor Data 
The Smart Bottle system collects data from a number of 

sensors enclosed in the bottle attachment base. For this 
work, however, we only consider the accelerometer data for 
x-, y-, and z-axis acceleration and pitch, yaw, and roll 
gyroscope data. Data are polled and collected at 50ms 
intervals and stored for analysis. 5 experiments were 
conducted to collect data from trained lab assistants 
performing a simulated feeding. Supplementary training and 
testing data for the “resting” state was generated using 
MATLAB. Data at each time-point constituted a separate 
“dataset” for the purposes of FFNN training   

B. Video Data 
In addition to acceleration and gyroscope data, video 

recordings were collected and time-synced to each feeding 
simulation. These data were manually classified for training 
and error testing purposes. Three unique states were used: 
“0” for indeterminate state, “1” for “resting” or “on-table”, 
and “2” for “feeding.”  

C. Simulated Feeding Events 
To develop accurate training and test datasets, feeding 

events were simulated by a trained researcher. During the 
five simulated feedings, the researcher conducted typical 
activities surrounding feeding events like preparing formula, 
feeding, bouncing, resting, walking, and repositioning 
multiple times. Events were repeated with the system in 
different orientations to simulate normal variability across 
the range of feeding events.  

D. Model and Data Analysis 
MATLAB was used for FFNN development, training, 

testing, and data analysis. The Deep Learning Toolbox 
provides a UI for developing FFNN models, applying 
training data, and data analysis.  

E. FFNN Models 
Three FFNN models were implemented to test for key 

weighting factors. The first model (Model 1) used all six 
datapoints (x-, y-, and z-axis acceleration and pitch, yaw, 
and roll gyroscope data) and produced two outputs 
(“feeding” and “on-table”) using two hidden network layers 
and 1 output layer, as shown in Figure 2.  A second model 
(Model 2) was used to evaluate the relative contributions of 
acceleration (x, y, z) and gyroscope (p,y,r) data to each of 
the two outputs. In this mode, FFNNs were developed for 
three inputs and a single output, to independently identify 
“feeding” and “on-table” events. The “feeding” FFNN used 
two hidden layers and 1 output layer while the “on-table” 
FFNN used one hidden layer and one output layer, as shown 
in Figure 3. The final model uses only the accelerometer 
inputs, but includes the five most recent measurements of 
each, resulting in 15 inputs used to classify two outputs 
using two hidden layers and 1 output layer, as shown in 

 
Figure 2: FFNN structure for Model 1. 6 inputs and 2 hidden layers are 
used to produce 2 potential outputs.  

 

 
(a) 

 
(b) 

Figure 3: FFNN structure for Model 2. (a) 3 inputs and 2 hidden layers 
are used to produce 1 output for “feeding.” (b) 3 inputs and 1 hidden 
layer are used to produce 1 output for “on-table.”  

 
(a) 

 
(b) 

Figure 4: FFNN structure for Model 3. (a) 15 inputs and 2 hidden 
layers are used to produce 1 output for “feeding.” (b) 6 inputs and 1 
hidden layer are used to produce 1 output for “on-table.”  
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Figure 4. Two FFNNs are trained using this model, for 
“feeding” and “on-table”, respectively, and the “on-table” 
output is delayed until 15 consecutive outputs are captured.  

F. FFNN Training 
Five simulated feeding events were recorded using the 

Smart Bottle system with simultaneous recorded video. 
Time-stamped accelerometer and gyroscope data were 
aligned with video and manually classified as “feeding,” 
“on-table,” or neither. Four of the datasets were used as 
training sets and the fifth was reserved for testing. The 
testing and training datasets were cycled throughout model 
development. Additional training data was generated for the 
“on-table” events using Gaussian distributed random 
variables classified within a 2% threshold of expected “on-

table” values. Additional testing data was also generated 
using uniformly distributed random variables. This data was 
used only in Model 2 to train and evaluate the “on-table” 
FFNN accuracy.  

III. RESULTS AND DISCUSSION 

A. Model 1: 6-input, 2-output 
Initially, we designed a single FFNN to identify both 

possible events based on the instantaneous values of the 
accelerometer and gyroscope. This 6-input, 2-output model 
was trained and tested using data from four of the five 
simulated feedings. The results (shown in Figure 6) indicate 
that the independent accuracies are 99.8% and 97.9% for 
“feeding” and “on-table,” respectively. However, combined 
evaluation method and significant overlap of datapoints for 
each event mean that the overall accuracy is significantly 
lower, as shown in Figure 9 where a significant portion of “on-
table” data was not identified by the FFNN.  

B. Model 2: 3-input, 1-output (2 parallel FFNN) 
The relative contributions of accelerometer and gyroscope 

data to each output, separate parallel FFNNs were trained and 
tested. The accuracy of gyroscope data in predicting “feeding” 
was 70.7% and “on-table” was 97.8%.  The accelerometer-
only FFNN maintained accurate output, correctly identifying 
99.3% and 99.8% of “feeding” and “on-table” events, 
respectively. The results, shown in Figure 8, indicate that the 
gyroscope data contributes negligibly to the FFNN “feeding” 
output and can be omitted.  

(a) 

 
(b) 

Figure 5: Model 1 “feeding” and “on-table” accuracy. Red and green 
lines indicate FFNN output (raw and rounded) and yellow is the 
desired output. 

 

 
Figure 7: Model 1 combined output data for simulated feeding events. 
2 indicates “feeding,” 1 indicates “on-table,” and 0 indicates neither. 
Note the significant error after 150 seconds. 

 

 
(a) 

 
(b) 

Figure 6: Model 2 “feeding” and “on-table” accuracy using only pitch, 
yaw, and roll gyroscope data. Red and green lines indicate FFNN 
output (raw and rounded) and yellow is the desired output. 
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C. Model 3: 15-input, 1-output (2 parallel FFNN) 
Using only accelerometer data allowed for greater 

flexibility in the size of the input dataset. Given the 
restrictions on programming and variable space, only a 
limited number of inputs could be used, and the data 
indicated a need for incorporating movement history in 
addition to instantaneous data. To do this, the most recent 
five datapoints for x-, y-, and z-axis acceleration were 
included as inputs (the maximum allowed given space 
constraints). Using this model, the FFNN achieved 99.7% 
accuracy in identifying “feeding” events with a 0.125 second 
group delay, as shown in Figure 7, but continued to 
misidentify “on-table” events. Adding an accumulator to 
identify 15 consecutive “on-table” outputs, effectively 
delaying the output by 0.75 seconds, corrected the error, as 
shown in Figure 10.  

IV. CONCLUSION 
 The ability to identify feeding events during data 

acquisition for tracking infant bottle-feeding behaviors in a 
flexible setting is an essential part of tracking such behaviors 
without affecting the subject’s environment. The 
development of an adaptable sensor hardware interface along 
with algorithmic event identification enables in-situ accurate 
data collection in an easily deployable manner. The critical 
adaptation presented here is the inclusion of time-history data 
in the FFNN training and testing sets for identification of 
“feeding” events, the identification of gyroscope data as 
unnecessary for identification of “feeding” events, and the 
inclusion of a 15-count accumulator for “on-table” data that corrects for momentary events that match test data while 

reducing computational overhead in the FFNN algorithm. 
Given the wide-spread usage of bottles for infant feeding, this 
intake-tracking device holds the potential to improve 
assessment of infant feeding patterns, a critical foundation for 
obesity prevention efforts. 
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