
  

  

  

Abstract— Research with human intracranial electrodes has 

traditionally been constrained by the limitations of the inpatient 

clinical setting. Immersive virtual reality (VR), however, can 

transcend setting and enable novel task design with precise 

control over visual and auditory stimuli. This control over visual 

and auditory feedback makes VR an exciting platform for new 

in-patient, human electrocorticography (ECOG) and stereo-

electroencephalography (sEEG) research. The integration of 

intracranial electrode recording and stimulation with VR task 

dynamics required foundational systems engineering. In this 

work, we present a custom API that bridges Unity, the leading 

VR game development engine, and Synapse, the proprietary 

software of the Tucker Davis Technologies (TDT) neural 

recording and stimulation platform. To demonstrate the 

functionality and efficiency of our API, we developed a closed-

loop brain-computer interface (BCI) task in which filtered 

neural signals controlled the movement of a virtual object and 

virtual object dynamics triggered neural stimulation.  This 

closed-loop VR-BCI task confirmed the utility, safety, and 

efficacy of our API and its readiness for human task deployment.  

Clinical Relevance— This work presents a novel Synapse-

Unity API that enables new VR-supported clinical research in 

human subjects with ECOG and sEEG electrodes implanted for 

seizure localization.   

I. INTRODUCTION 

Immersive virtual reality (VR) is an exciting new 
behavioral experimentation platform for human subjects 
research [1-5]. While VR has been key in many animal-model 
studies, the technology required to create world-scale, virtual 
reality experiments for humans has only recently become 
accessible. Using binocular image presentation, camera-and 
other sensor-based tracking, new VR head mounted displays 
(HMDs) can provide a complete three-dimensional reality 
with which humans can naturally interact and over which 
experimenters have near complete control.  Already, portable 
and immersive VR has enabled new approaches to non-
invasive electroencephalography (EEG) research in humans 
[1]-[5], and recent studies have noted the promise of VR-based 
experiments in outpatient subjects chronically implanted with 
the NeuroPace RNS device [6,7].  

In contrast to scalp EEG, intracranial electrocorticography 
(ECOG) and stereo-electroencephalography (sEEG) 
electrodes offer a significant improvement in spatiotemporal 
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signal resolution and enable direct electrical stimulation (DES) 
of the human brain. Intracranial electrodes are temporarily 
implanted in human patients to characterize seizures and 
identify foci of epileptogenic neural tissue that may be resected 
to treat seizure disorders. Such in-patient ECOG and sEEG 
therapeutic studies often incorporate over 200 electrodes from 
which simultaneous local field potentials (LFPs) can be 
recorded and precise electrical stimulation can be delivered. 

In this paper, we present a systems engineering solution 
that bridges support for every VR HMD on the market and the 
Tucker-Davis Technologies neurophysiology suite, a premier 
neural recording and stimulation hardware platform. Our 
custom software enables easy-to-use plug-ins for VR-based 
experimental design, granting control of neural recording and 
neural stimulation parameters from within in an ongoing VR 
task. We demonstrate the functionality of our platform using 
an example closed-loop VR-BCI task. We also evaluate the 
efficiency and safety of our system during this task using 
benchtop hardware in a controlled laboratory setting.  

II. COMPONENT IDENTIFICATION & SYSTEM INTEGRATION 

A critical first step towards an integrated VR and human 
neural recording and stimulation research platform was the 
identification of the VR and neural electrophysiology interface 
components. We selected Unity for its status as a mature VR 
development tool, ease of use, and plentiful tutorials that allow 
newcomers to create VR applications quickly using either a 
graphical user interface (GUI) or C# scripting [8]. Unity also 
provides plug-in support for a wide variety of virtual (VR), 
augmented (AR), and extended (XR) reality devices.  

For our human electrophysiology platform, Tucker Davis 
Technologies (TDT) neural recording and neural stimulation 
devices were selected and approved for research use in humans 
by the Institutional Review Board (IRB). Synapse, the 
proprietary software and user-interface for TDT systems, 
enables real-time control of TDT hardware during an 
experiment, allowing query and update of signals processing, 
pulse generation, and stimulation parameters [9]. Synapse 
offers a RESTful API with bindings for Python, MATLAB, 
and C++, but does not support C# which is needed for Unity 
integration. Synapse also provides a UDP interface for 
minimal latency data transmission between an external 
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computer and the neural signals processor, the RZ unit, for 
configurable use inside a Synapse-defined project. The 
bandwidth of the UDP interface is limited, however, so care 
must be taken when designing tasks to ensure that only 
necessary information, like synchronization and trigger cues, 
is passed over UDP. TDT documentation suggests that the 
maximum data throughput is 38.4 kBps, with 192 32-bit words 
being sent/received at 50 Hz. 

For real-time Synapse and Unity interaction, we developed 
an API that manages the query and update of Synapse and 
Unity state variables during an ongoing experiment, while also 
governing data transfer between the TDT and VR task 
computers. Key design and evaluation metrics for our API 
included safety, within-experiment functionality, minimal lag, 
and ease of integration into standard Unity code.  

A. The Synapse-C# interface 

Integration of Synapse and Unity required development of 
a pure C# version of the provided Synapse API. Although we 
could have simply built a C# interface wrapping the existing 
API, we determined writing a new Synapse API in C# would 
be a more robust solution. This was due to Synapse’s existing 
RESTful API being created with dynamically typed languages 
in mind, specifically Python and MATLAB. Although the 
existing C++ bindings of the RESTful API addressed the 
problem of dynamic typing by treating all data types as 
doubles, this solution did not allow for strict type safety. 
Human research demands fail-safe control of neural 
stimulation, so accurate data typing is requisite. Additionally, 
the existing bindings for Python, MATLAB, and C++ were 
distributed as a static Windows object library (.lib). We instead 
compiled our API in dynamic link library (.dll) format, for 
easier integration with Unity and other standard C# projects. 

Finally, the existing RESTful API for Synapse was not 
object-oriented and mostly string-based, requiring 
unnecessarily clumsy syntax to work directly with Unity. In 

contrast, our C# Synapse API bindings facilitate the “getting” 
and “setting” of data inside Synapse in a simple, object-
oriented fashion. This allows the code that interacts with 
Synapse to merge seamlessly with Unity code, eliminating 
awkward changes in syntax and allowing Unity developers to 
ignore the underlying complexity of the provided API, 
working instead with familiar object-oriented patterns. Our 
API also enables a more robust error handling system that 
eases the burden of interpreting error information returned 
from Synapse in Unity. Error handling in this context is 
extremely important. We use the C# concept of nullable value 
types to force the checking of potentially null data before use. 
For example, if a user tries to retrieve an API parameter that is 
not enabled in the API menu for the specific Synapse gizmo, 
the function will return a null value type. The user will have to 
check whether the value returned is not null before being able 
to use it unless they specifically use a cast to knowingly bypass 
the checking. Using this system instead of exceptions helps to 
eliminate the possibility of API generated crashes, leaving 
Synapse in an unwanted state during an experiment. 

In Synapse, “Gizmos” are the functional units for 
recording and stimulation control. In our API, each Gizmo is 
given its own class, containing all API parameters and 
associated data. At startup, each Gizmo is instantiated with 
their name and type, and information is retrieved from the 
Synapse environment to determine the parameter boundaries 
of the configured Synapse experiment. These parameters and 
boundaries can then be called and modified from within the 
Unity environment. One of these gizmos is a generic purpose 
UDP interface which allow 32bit words transmitted to or from 
the RZ neural processor as an input or output to other gizmos. 
Our API also exposes the ability to read or write this RZ UDP 
port directly as a low latency input or output. 

It is important to note that in this implementation data are 
being sent in the clear as JSON or UDP packets. Although 
TDT may address security concerns in the future, we linked 

 

Figure 1.  The hardware components of our testing and development setup. Signal input will come from the brain via implanted electrodes in human 

subjects, but this can be synthesized using electrodes, a function generator, and a saline tank in a laboratory space (depicted left and highlighted in red). 

The TDT recording hardware connects to the TDT computer hosting Synapse (middle column), while a separate task computer hosts Unity and supports 
the VR HMD hardware (right). Our developed API is deployed on the Unity-hosting computer and facilitates information transfer between the Unity 

environment and Synapse (blue). Various connections link these hardware components, including standard touch proof (red), fiber optic (blue), ethernet 

(yellow), and bluetooth (dashe blue). Wired and wireless HMD integration is supported within Unity. 
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our Synapse and the Unity computers via a network (LAN) 
that was not connected to the external internet in order to keep 
patient behavioral and neural data secure (Fig 1).  

B. Validation using a benchtop Bi-directional VR-BCI Task 

To demonstrate the bidirectional capabilities of the 
Synapse-Unity API, we built a one-dimensional BCI control 
task in Unity (Fig 2). In this VR-BCI task, a cannon is rotated 
clockwise or counterclockwise according to the beta power 
(10-30Hz) recorded by a selected electrode. After between 10 
and 15 seconds of beta-driven targeting, the cannon fires a 
cannonball. If this cannonball hits the depicted box target, the 
collision detected in Unity triggers a train of stimulation to be 
delivered by the TDT.  

We synthesized real-time neural recordings in our 
laboratory environment in two ways. To test the coupling 
between beta-band power and cannon angle, we used a 
function generator and a bucket of saline solution set to mimic 

brain resistivity (Fig 1, left bottom). With the function 
generator, we introduced a complex voltage signal with a 2Hz 
sinusoidal power oscillation in the beta band. This signal was 
recorded by the TDT via a stereo-electroencephalography 
probe immersed in the saline solution (Fig 1). Using onboard 
digital signals processing hardware, the TDT band-passed the 
signal 10-30Hz and applied a Hilbert transform to extract the 
continuous power envelope, in real time. The cannon was seen 
to rotate as expected with this input (Fig 3, left). To evaluate 
our platform using realistic neural signals, we also utilized 
TDT’s neural emulator software, Corpus, which simulates the 
spectral characteristics of human neural recordings. To clarify, 
Corpus is a neural emulator and does not replay actual neural 
recordings. Data were processed as before to extract beta-band 
power.  

In both cases, two thresholds were selected based on 
standard deviations of beta power, creating low, medium, and 
high ordinal labels. For the Corpus emulator, these thresholds 
determined labels of βLOW ≤ 2.2E-10 dBW, βHIGH ≥ 3.2E-10 
dBW, and 2.2E-10 < βMEDIUM < 3.2E-10 dBW. Labels were 
used to update the rotation direction of the cannon every frame 
within Unity (60-90Hz): the ordinal label βLOW triggered no 
cannon rotation, βMEDIUM triggered counterclockwise rotation, 
and βHIGH triggered clockwise rotation (Fig 3). If a cannonball 
collided with its appropriate target in Unity, stimulation was 
triggered. In our demonstration, stimulation was delivered as 
a train of constant current, biphasic pulses with pulse widths 
of 200us and a total train duration of one frame.  

To assess the real-time performance of the developed 
software interface, we assessed system latency by measuring 
the delay from collision detection to stimulation onset. This 
was performed using a USB to serial port adapter to trigger 
TTL pulses at the start of each collision detected event. These 
TTL pulses were fed into an analog input channel and sampled 
at 24.4KHz by the TDT system such that the speed of the API 
in relaying collision, triggering stimulation, as well as any 
TDT hardware delays in executing the stimulation command 
could be measured. 

III. RESULTS  

The tight coupling between the constructed signal’s beta 
power in black and the change in the angle of the cannon in 
blue demonstrates the success of our task design and the rapid 
communication between the TDT recording hardware and the 

 

Figure 2.  The 3D, in-game perspective of the cannon task. Band 

power in beta frequencies (10-30Hz) at one electrode is used to rotate 

the cannon in place with 90-degrees of swing. Two thresholds, low and 
high, define the beta power levels that control no rotation, 

counterclockwise rotation, or clockwise rotation of the cannon. Power 

estimates are completed by the TDT and imported each frame in the 
Unity task to update continuous cannon aiming. Projectiles are 

launched when a c ountdown timer reaches zero. If the projectile 

collides with the target box at one of three positions (for example, 
position 2, above), then the API triggers the TDT to deliver stimulation 

pulses to specified electrodes.  

 

 

Figure 3.  Three graphs depicting the relation between beta-band power and smoothed cannon angle. (left) The superimposed time series of the change 

in cannon angle (blue) and Beta power (black), showing clear and near-immediate correlation. (right top) A plot of continuous beta power over multiple 

aim-and-shoot trials, and (bottom right) a concurrent plot of the cannon angle over time. The horizontal black lines are the thresholds for counter- and 
clockwise cannon rotation. The vertical red lines indicate when cannon balls were fired at their targets, and vertical blue lines indicate when the target 

was hit and stimulation delivered. 
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Unity task environment (Fig 3, left). With the emulator, we 
collected over 550 trials of performance data to demonstrate 
the stability of the API. A trial is defined as one approximately 
ten second period aiming followed by one launch of a 
projectile. Trial number 552 is depicted below in Fig 3, right, 
as it had a high collision rate for an input that was effectively 
a random walk, in terms of task dynamics.  

As seen in Fig 3, the cannon fires once every 10 to 15 
seconds, marked by a vertical red line in the top graph showing 
beta power. The extended delay visible between the third and 
fourth cannon fire is the result of a delay between one batch of 
trials and another, a circumstance unique to the continuous 
stability test. If the cannon fires while it is at the appropriate 
angle to hit the target, the Unity experiment marks that trial as 
a successful collision, depicted in Fig 3 as a blue vertical line 
in the lower graph showing cannon angle. 

The delay from collision detection to stimulation onset was 
shown to be small with little variation, on average 6.8 ms ± 
1.7ms standard deviation across 217 collision-stimulation 
trials. Over 96.7% of delays were under 10ms, the maximum 
delay was 16.8ms, and the minimum delay 4.3ms.  

IV. DISCUSSION 

By designing this integrated VR and human 
neurophysiology platform, we have provided experimentalists 
with a highly capable and flexible resource for developing 
virtual reality tasks, including bidirectional VR-BCI 
experiments. Our API permits rapid communication of task-
relevant dynamics, such as ongoing band power measures or 
collisions within the virtual task, that are below visuohaptic 
and audiovisual perceptual delays [10,11]. While a researcher 
could instead use the newly released Python APIs from both 
Unity and TDT, the stability and temporal characteristics of 
this approach remain untested.  

Our interface with the Unity game engine also enables 
support for augmented reality, mixed reality, mobile and PC-
deployed applications. Additionally, Unity provides high-
definition rendering, three-dimensional sound, and the 
integration of human physiologic data, like gaze-tracking, 
during task performance. Moreover, as an actively supported 
development platform, Unity is constantly integrating the 
latest hardware and improved software performance solutions. 
Our API links standard neural recording and neural stimulation 
hardware to this powerful engine for game-like behavioral task 
design.  

It is worth emphasizing that support for Unity game 
development is immense, with easily accessible online 
documentation, free and paid tutorials, as well as many 
prebuilt assets. Basic Unity game design can be learned over 
the course of a few weeks, even for those entirely unfamiliar 
with game design or C# programming. Moreover, as Unity 
integrates new graphical scripting tools, the barrier to entry 
may be further reduced, allowing for those without any 
computer science background to create tasks quickly, 
creatively, and with minimal scripting. Linking human subject, 
invasive neural recording research to this design platform 
offers a new frontier of behavioral task design [7,12].   

To that end, this API will soon be published on GitHub 
under a permissive license. Before public release, we intend to 

refine our documentation, add additional features for logging, 
and support new and parallel ways to ensure synchronized 
timing between Unity and Synapse. Our current API supports 
UDP-based synchronization as well as synchronization with 
analog signals such as USB bit output, audio cueing, and 
photodiode voltage recording. We also intend to release a 
general SynapseAPI experiment as a .synexp file that would 
demonstrate implementation of the API alongside a simple 
neural recording-based BCI task.  

V.  CONCLUSION 

We designed and evaluated a VR development platform 

that integrates virtual reality devices with the hardware of in-

patient, intracranial neural recording and neural stimulation 

research. We presented an example closed-loop VR-BCI task 

built with our system, as well as performance metrics relevant 

to closed-loop task design. We encourage communication 

from labs interested in implementing our Unity-Synapse 

platform and look forward to results of VR-based human 

intracranial research. 
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