

Abstract— Research with human intracranial electrodes has

traditionally been constrained by the limitations of the inpatient

clinical setting. Immersive virtual reality (VR), however, can

transcend setting and enable novel task design with precise

control over visual and auditory stimuli. This control over visual

and auditory feedback makes VR an exciting platform for new

in-patient, human electrocorticography (ECOG) and stereo-

electroencephalography (sEEG) research. The integration of

intracranial electrode recording and stimulation with VR task

dynamics required foundational systems engineering. In this

work, we present a custom API that bridges Unity, the leading

VR game development engine, and Synapse, the proprietary

software of the Tucker Davis Technologies (TDT) neural

recording and stimulation platform. To demonstrate the

functionality and efficiency of our API, we developed a closed-

loop brain-computer interface (BCI) task in which filtered

neural signals controlled the movement of a virtual object and

virtual object dynamics triggered neural stimulation. This

closed-loop VR-BCI task confirmed the utility, safety, and

efficacy of our API and its readiness for human task deployment.

Clinical Relevance— This work presents a novel Synapse-

Unity API that enables new VR-supported clinical research in

human subjects with ECOG and sEEG electrodes implanted for

seizure localization.

I. INTRODUCTION

Immersive virtual reality (VR) is an exciting new
behavioral experimentation platform for human subjects
research [1-5]. While VR has been key in many animal-model
studies, the technology required to create world-scale, virtual
reality experiments for humans has only recently become
accessible. Using binocular image presentation, camera-and
other sensor-based tracking, new VR head mounted displays
(HMDs) can provide a complete three-dimensional reality
with which humans can naturally interact and over which
experimenters have near complete control. Already, portable
and immersive VR has enabled new approaches to non-
invasive electroencephalography (EEG) research in humans
[1]-[5], and recent studies have noted the promise of VR-based
experiments in outpatient subjects chronically implanted with
the NeuroPace RNS device [6,7].

In contrast to scalp EEG, intracranial electrocorticography
(ECOG) and stereo-electroencephalography (sEEG)
electrodes offer a significant improvement in spatiotemporal

*Co-first authors who contributed equally to this work.
M. Montag is an undergraduate student in the University of Washington

School of Computer Science and Engineering, Seattle, WA, USA (email:

rmontag@uw.edu).
C. Paschall is a graduate student in the University of Washington

Department of Bioengineering and a UW Reality Lab Fellow, Seattle, WA,

USA (corresponding author, e-mail: copa2894@ uw.edu).
J. Ojemann is a Professor in the University of Washington Department of

Neurological Surgery Seattle, WA, USA (email: jojemann@uw.edu).

signal resolution and enable direct electrical stimulation (DES)
of the human brain. Intracranial electrodes are temporarily
implanted in human patients to characterize seizures and
identify foci of epileptogenic neural tissue that may be resected
to treat seizure disorders. Such in-patient ECOG and sEEG
therapeutic studies often incorporate over 200 electrodes from
which simultaneous local field potentials (LFPs) can be
recorded and precise electrical stimulation can be delivered.

In this paper, we present a systems engineering solution
that bridges support for every VR HMD on the market and the
Tucker-Davis Technologies neurophysiology suite, a premier
neural recording and stimulation hardware platform. Our
custom software enables easy-to-use plug-ins for VR-based
experimental design, granting control of neural recording and
neural stimulation parameters from within in an ongoing VR
task. We demonstrate the functionality of our platform using
an example closed-loop VR-BCI task. We also evaluate the
efficiency and safety of our system during this task using
benchtop hardware in a controlled laboratory setting.

II. COMPONENT IDENTIFICATION & SYSTEM INTEGRATION

A critical first step towards an integrated VR and human
neural recording and stimulation research platform was the
identification of the VR and neural electrophysiology interface
components. We selected Unity for its status as a mature VR
development tool, ease of use, and plentiful tutorials that allow
newcomers to create VR applications quickly using either a
graphical user interface (GUI) or C# scripting [8]. Unity also
provides plug-in support for a wide variety of virtual (VR),
augmented (AR), and extended (XR) reality devices.

For our human electrophysiology platform, Tucker Davis
Technologies (TDT) neural recording and neural stimulation
devices were selected and approved for research use in humans
by the Institutional Review Board (IRB). Synapse, the
proprietary software and user-interface for TDT systems,
enables real-time control of TDT hardware during an
experiment, allowing query and update of signals processing,
pulse generation, and stimulation parameters [9]. Synapse
offers a RESTful API with bindings for Python, MATLAB,
and C++, but does not support C# which is needed for Unity
integration. Synapse also provides a UDP interface for
minimal latency data transmission between an external

R. Rao is a Professor in the University of Washington Department of
Computer Science, Seattle, WA, USA (email: rao@cs.washington.edu)

J. Herron is an Assistant Professor in the University of Washington

Department of Neurological Surgery, Seattle, WA, USA (email:
jeffherr@uw.edu)

Research supported by the National Science Foundation (EEC-1028725)

and the UW Reality Lab, Facebook, Google, Futurewei, and Amazon. The
content is solely responsibility of the authors and does not necessarily

represent the official views of any funding body.

A Platform for Virtual Reality Task Design with

Intracranial Electrodes

Maurice Montag*, Courtnie Paschall*, Jeffrey Ojemann, Rajesh Rao, Jeffrey Herron, Member, IEEE

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 6659

computer and the neural signals processor, the RZ unit, for
configurable use inside a Synapse-defined project. The
bandwidth of the UDP interface is limited, however, so care
must be taken when designing tasks to ensure that only
necessary information, like synchronization and trigger cues,
is passed over UDP. TDT documentation suggests that the
maximum data throughput is 38.4 kBps, with 192 32-bit words
being sent/received at 50 Hz.

For real-time Synapse and Unity interaction, we developed
an API that manages the query and update of Synapse and
Unity state variables during an ongoing experiment, while also
governing data transfer between the TDT and VR task
computers. Key design and evaluation metrics for our API
included safety, within-experiment functionality, minimal lag,
and ease of integration into standard Unity code.

A. The Synapse-C# interface

Integration of Synapse and Unity required development of
a pure C# version of the provided Synapse API. Although we
could have simply built a C# interface wrapping the existing
API, we determined writing a new Synapse API in C# would
be a more robust solution. This was due to Synapse’s existing
RESTful API being created with dynamically typed languages
in mind, specifically Python and MATLAB. Although the
existing C++ bindings of the RESTful API addressed the
problem of dynamic typing by treating all data types as
doubles, this solution did not allow for strict type safety.
Human research demands fail-safe control of neural
stimulation, so accurate data typing is requisite. Additionally,
the existing bindings for Python, MATLAB, and C++ were
distributed as a static Windows object library (.lib). We instead
compiled our API in dynamic link library (.dll) format, for
easier integration with Unity and other standard C# projects.

Finally, the existing RESTful API for Synapse was not
object-oriented and mostly string-based, requiring
unnecessarily clumsy syntax to work directly with Unity. In

contrast, our C# Synapse API bindings facilitate the “getting”
and “setting” of data inside Synapse in a simple, object-
oriented fashion. This allows the code that interacts with
Synapse to merge seamlessly with Unity code, eliminating
awkward changes in syntax and allowing Unity developers to
ignore the underlying complexity of the provided API,
working instead with familiar object-oriented patterns. Our
API also enables a more robust error handling system that
eases the burden of interpreting error information returned
from Synapse in Unity. Error handling in this context is
extremely important. We use the C# concept of nullable value
types to force the checking of potentially null data before use.
For example, if a user tries to retrieve an API parameter that is
not enabled in the API menu for the specific Synapse gizmo,
the function will return a null value type. The user will have to
check whether the value returned is not null before being able
to use it unless they specifically use a cast to knowingly bypass
the checking. Using this system instead of exceptions helps to
eliminate the possibility of API generated crashes, leaving
Synapse in an unwanted state during an experiment.

In Synapse, “Gizmos” are the functional units for
recording and stimulation control. In our API, each Gizmo is
given its own class, containing all API parameters and
associated data. At startup, each Gizmo is instantiated with
their name and type, and information is retrieved from the
Synapse environment to determine the parameter boundaries
of the configured Synapse experiment. These parameters and
boundaries can then be called and modified from within the
Unity environment. One of these gizmos is a generic purpose
UDP interface which allow 32bit words transmitted to or from
the RZ neural processor as an input or output to other gizmos.
Our API also exposes the ability to read or write this RZ UDP
port directly as a low latency input or output.

It is important to note that in this implementation data are
being sent in the clear as JSON or UDP packets. Although
TDT may address security concerns in the future, we linked

Figure 1. The hardware components of our testing and development setup. Signal input will come from the brain via implanted electrodes in human

subjects, but this can be synthesized using electrodes, a function generator, and a saline tank in a laboratory space (depicted left and highlighted in red).

The TDT recording hardware connects to the TDT computer hosting Synapse (middle column), while a separate task computer hosts Unity and supports
the VR HMD hardware (right). Our developed API is deployed on the Unity-hosting computer and facilitates information transfer between the Unity

environment and Synapse (blue). Various connections link these hardware components, including standard touch proof (red), fiber optic (blue), ethernet

(yellow), and bluetooth (dashe blue). Wired and wireless HMD integration is supported within Unity.

6660

our Synapse and the Unity computers via a network (LAN)
that was not connected to the external internet in order to keep
patient behavioral and neural data secure (Fig 1).

B. Validation using a benchtop Bi-directional VR-BCI Task

To demonstrate the bidirectional capabilities of the
Synapse-Unity API, we built a one-dimensional BCI control
task in Unity (Fig 2). In this VR-BCI task, a cannon is rotated
clockwise or counterclockwise according to the beta power
(10-30Hz) recorded by a selected electrode. After between 10
and 15 seconds of beta-driven targeting, the cannon fires a
cannonball. If this cannonball hits the depicted box target, the
collision detected in Unity triggers a train of stimulation to be
delivered by the TDT.

We synthesized real-time neural recordings in our
laboratory environment in two ways. To test the coupling
between beta-band power and cannon angle, we used a
function generator and a bucket of saline solution set to mimic

brain resistivity (Fig 1, left bottom). With the function
generator, we introduced a complex voltage signal with a 2Hz
sinusoidal power oscillation in the beta band. This signal was
recorded by the TDT via a stereo-electroencephalography
probe immersed in the saline solution (Fig 1). Using onboard
digital signals processing hardware, the TDT band-passed the
signal 10-30Hz and applied a Hilbert transform to extract the
continuous power envelope, in real time. The cannon was seen
to rotate as expected with this input (Fig 3, left). To evaluate
our platform using realistic neural signals, we also utilized
TDT’s neural emulator software, Corpus, which simulates the
spectral characteristics of human neural recordings. To clarify,
Corpus is a neural emulator and does not replay actual neural
recordings. Data were processed as before to extract beta-band
power.

In both cases, two thresholds were selected based on
standard deviations of beta power, creating low, medium, and
high ordinal labels. For the Corpus emulator, these thresholds
determined labels of βLOW ≤ 2.2E-10 dBW, βHIGH ≥ 3.2E-10
dBW, and 2.2E-10 < βMEDIUM < 3.2E-10 dBW. Labels were
used to update the rotation direction of the cannon every frame
within Unity (60-90Hz): the ordinal label βLOW triggered no
cannon rotation, βMEDIUM triggered counterclockwise rotation,
and βHIGH triggered clockwise rotation (Fig 3). If a cannonball
collided with its appropriate target in Unity, stimulation was
triggered. In our demonstration, stimulation was delivered as
a train of constant current, biphasic pulses with pulse widths
of 200us and a total train duration of one frame.

To assess the real-time performance of the developed
software interface, we assessed system latency by measuring
the delay from collision detection to stimulation onset. This
was performed using a USB to serial port adapter to trigger
TTL pulses at the start of each collision detected event. These
TTL pulses were fed into an analog input channel and sampled
at 24.4KHz by the TDT system such that the speed of the API
in relaying collision, triggering stimulation, as well as any
TDT hardware delays in executing the stimulation command
could be measured.

III. RESULTS

The tight coupling between the constructed signal’s beta
power in black and the change in the angle of the cannon in
blue demonstrates the success of our task design and the rapid
communication between the TDT recording hardware and the

Figure 2. The 3D, in-game perspective of the cannon task. Band

power in beta frequencies (10-30Hz) at one electrode is used to rotate

the cannon in place with 90-degrees of swing. Two thresholds, low and
high, define the beta power levels that control no rotation,

counterclockwise rotation, or clockwise rotation of the cannon. Power

estimates are completed by the TDT and imported each frame in the
Unity task to update continuous cannon aiming. Projectiles are

launched when a c ountdown timer reaches zero. If the projectile

collides with the target box at one of three positions (for example,
position 2, above), then the API triggers the TDT to deliver stimulation

pulses to specified electrodes.

Figure 3. Three graphs depicting the relation between beta-band power and smoothed cannon angle. (left) The superimposed time series of the change

in cannon angle (blue) and Beta power (black), showing clear and near-immediate correlation. (right top) A plot of continuous beta power over multiple

aim-and-shoot trials, and (bottom right) a concurrent plot of the cannon angle over time. The horizontal black lines are the thresholds for counter- and
clockwise cannon rotation. The vertical red lines indicate when cannon balls were fired at their targets, and vertical blue lines indicate when the target

was hit and stimulation delivered.

6661

Unity task environment (Fig 3, left). With the emulator, we
collected over 550 trials of performance data to demonstrate
the stability of the API. A trial is defined as one approximately
ten second period aiming followed by one launch of a
projectile. Trial number 552 is depicted below in Fig 3, right,
as it had a high collision rate for an input that was effectively
a random walk, in terms of task dynamics.

As seen in Fig 3, the cannon fires once every 10 to 15
seconds, marked by a vertical red line in the top graph showing
beta power. The extended delay visible between the third and
fourth cannon fire is the result of a delay between one batch of
trials and another, a circumstance unique to the continuous
stability test. If the cannon fires while it is at the appropriate
angle to hit the target, the Unity experiment marks that trial as
a successful collision, depicted in Fig 3 as a blue vertical line
in the lower graph showing cannon angle.

The delay from collision detection to stimulation onset was
shown to be small with little variation, on average 6.8 ms ±
1.7ms standard deviation across 217 collision-stimulation
trials. Over 96.7% of delays were under 10ms, the maximum
delay was 16.8ms, and the minimum delay 4.3ms.

IV. DISCUSSION

By designing this integrated VR and human
neurophysiology platform, we have provided experimentalists
with a highly capable and flexible resource for developing
virtual reality tasks, including bidirectional VR-BCI
experiments. Our API permits rapid communication of task-
relevant dynamics, such as ongoing band power measures or
collisions within the virtual task, that are below visuohaptic
and audiovisual perceptual delays [10,11]. While a researcher
could instead use the newly released Python APIs from both
Unity and TDT, the stability and temporal characteristics of
this approach remain untested.

Our interface with the Unity game engine also enables
support for augmented reality, mixed reality, mobile and PC-
deployed applications. Additionally, Unity provides high-
definition rendering, three-dimensional sound, and the
integration of human physiologic data, like gaze-tracking,
during task performance. Moreover, as an actively supported
development platform, Unity is constantly integrating the
latest hardware and improved software performance solutions.
Our API links standard neural recording and neural stimulation
hardware to this powerful engine for game-like behavioral task
design.

It is worth emphasizing that support for Unity game
development is immense, with easily accessible online
documentation, free and paid tutorials, as well as many
prebuilt assets. Basic Unity game design can be learned over
the course of a few weeks, even for those entirely unfamiliar
with game design or C# programming. Moreover, as Unity
integrates new graphical scripting tools, the barrier to entry
may be further reduced, allowing for those without any
computer science background to create tasks quickly,
creatively, and with minimal scripting. Linking human subject,
invasive neural recording research to this design platform
offers a new frontier of behavioral task design [7,12].

To that end, this API will soon be published on GitHub
under a permissive license. Before public release, we intend to

refine our documentation, add additional features for logging,
and support new and parallel ways to ensure synchronized
timing between Unity and Synapse. Our current API supports
UDP-based synchronization as well as synchronization with
analog signals such as USB bit output, audio cueing, and
photodiode voltage recording. We also intend to release a
general SynapseAPI experiment as a .synexp file that would
demonstrate implementation of the API alongside a simple
neural recording-based BCI task.

V. CONCLUSION

We designed and evaluated a VR development platform

that integrates virtual reality devices with the hardware of in-

patient, intracranial neural recording and neural stimulation

research. We presented an example closed-loop VR-BCI task

built with our system, as well as performance metrics relevant

to closed-loop task design. We encourage communication

from labs interested in implementing our Unity-Synapse

platform and look forward to results of VR-based human

intracranial research.

REFERENCES

[1] S. Bouchard and A. Rizzo, “Applications of Virtual Reality in Clinical

Psychology and Clinical Cognitive Neuroscience–An Introduction,” in

Virtual Reality for Psychological and Neurocognitive Interventions, A.
“skip” Rizzo and S. Bouchard, Eds. New York, NY: Springer New

York, 2019, pp. 1–13.

[2] L. Bréchet et al. “First-person view of one’s body in immersive virtual

reality: Influence on episodic memory,” PLoS One, vol. 14, no. 3, p.

e0197763, Mar. 2019.

[3] K. Jahn et al. “Designing Self-presence in Immersive Virtual Reality to

Improve Cognitive Performance—A Research Proposal,” in
Information Systems and Neuroscience, 2020, pp. 83–91.

[4] A. Vourvopoulos et al. “Effects of a Brain-Computer Interface With

Virtual Reality (VR) Neurofeedback: A Pilot Study in Chronic Stroke

Patients,” Front. Hum. Neurosci., vol. 13, p. 210, Jun. 2019.

[5] D. D. Georgiev et al. “Virtual Reality for Neurorehabilitation and

Cognitive Enhancement,” Brain Sci, vol. 11, no. 2, Feb. 2021, doi:

10.3390/brainsci11020221.

[6] U. Topalovic et al. “Wireless Programmable Recording and

Stimulation of Deep Brain Activity in Freely Moving

Humans,” Neuron, vol. 108, no. 2, pp. 322–334.e9, Oct. 2020.

[7] A. Ramirez-Zamora et al. “Proceedings of the Seventh Annual Deep

Brain Stimulation Think Tank: Advances in Neurophysiology,
Adaptive DBS, Virtual Reality, Neuroethics and Technology .” Front

in Hum Neuro, 2020.

[8] Tucker-Davis Technologies, “Synapse Manual.”

https://www.tdt.com/docs/synapse/ (accessed May 2021).

[9] Unity Technologies, “User Manual 2020.3 (LTS)”

https://docs.unity3d.com/Manual/UnityManual.html (accessed May

03, 2021).

[10] I. Vogels. “Detection of temporal delays in visual-haptic interfaces,”

Hum. Factors, vol. 46, no. 1, pp. 118–134, Spring 2004. H.-Y.

[11] E. Zhou et al. “Audiovisual temporal integration: Cognitive processing,

neural mechanisms, developmental trajectory and potential

interventions,” Neuropsychologia, vol. 140, p. 107396, Mar. 2020.

[12] P. Kourtesis et al. “Guidelines for the Development of Immersive

Virtual Reality Software for Cognitive Neuroscience and

Neuropsychology: The Development of Virtual Reality Everyday
Assessment Lab (VREAL), a Neuropsychological Test Battery in

Immersive Virtual Reality,” Frontiers in Computer Science, vol. 1, p.

12, 2020.

6662

