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Abstract— Transcranial Direct Current Stimulation is a
popular noninvasive brain stimulation (NIBS) technique
that modulates brain excitability by means of low-amplitude
electrical current (usually <4mA) delivered to the electrodes
on the scalp. The NIBS research has gained significant
momentum in the past decade, prompting tDCS as an
adjunctive therapeutic tool for neuromuscular disorders like
stroke. However, due to stroke lesions and the differences in
individual neuroanatomy, the targeted brain region may not
show the same response upon NIBS across stroke patients.
To this end, we conducted a study to test the feasibility of
targeted NIBS. The hand motor hotspot (HMH) for each
chronic stroke participant was identified using Neuronavigated
Transcranial Magnetic Stimulation (TMS). After identifying
the HMH as the neural target site, we applied High-definition
TDCS with the current delivered at 2mA for 20 minutes.
To simulate the effects of HD-tDCS in the brain, especially
with stroke lesions, we used the computational modeling tool
(ROAST). The lesion mask was identified using an automated
tool (LINDA). This paper demonstrates that the stroke lesions
can be incorporated in the computational modeling of electric
field distribution upon HD-tDCS without manual intervention.

Clinical relevance— Our proposed automated workflow
opens up the possibility of individualized tDCS dosage cali-
bration for neuropathological conditions, including stroke and
TBI.

I. INTRODUCTION

Transcranial Direct Current Stimulation (tDCS) is a
promising neuromodulation tool that is gaining significant
attention in clinical research spanning psychiatry [1] and
neurorehabilitation [2], [3]. However, tDCS for clinical use
is still in its infancy as tDCS yielded mixed results regarding
the significant improvement in functional outcomes [4], [5].
We attribute this observation to the lack of understanding
of the exact mechanism of brain stimulation in the clinical
population. Furthermore, given the heterogeneity in stroke
in terms of lesion location, we need a targeted approach
wherein we stimulate more focal regions in the brain. This
will further help us elucidate the underlying mechanism of
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tDCS in the specific region of interest. Recent advances in
the development of High-definition tDCS (HD-tDCS) show
that HD-tDCS is spatially focal and can potentially be used
for targeted stimulation of the affected region in the brain [6].
Moreover, HD-tDCS is shown to have longer effects in terms
of cortical plasticity as compared to the conventional sponge-
electrode tDCS [7]. However, the benefits of HD-tDCS for
motor recovery in stroke are not fully explored. Given the
high focality of HD-tDCS, structural brain anomalies such
as lesions or tumors can affect the electric field intensity
at the target site. This poses a challenge in understanding
whether the targeted region on the ipsilesional side is getting
the electric field intensity delivered. The precise pattern of
electrical current flow is influenced by many factors, includ-
ing the stimulation intensity, stimulation site on the scalp, the
neuroanatomy of the individual getting the stimulation, and
the tissue properties in the brain. The computational models
need to consider these factors, mainly when dealing with
anatomies with a pathological condition. It is reported that
the cerebrospinal fluid is highly conductive [8] in terms of
the electric current flow within the brain, and the structural
changes such as cerebral edema caused by hydrocephalus can
result in abnormally high/low current in the target region. By
measuring the deviation of electric field flow characteristics,
we can personalize the tDCS dosage. This paper presents
an automated workflow for the computational modeling
of electric field flow in chronic stroke with lesions. Our
workflow allows for estimating the current flow in any given
anatomical region of interest with the volumetric approach.

II. METHODS AND MATERIALS
A. Participants

Seven (4 Male, 3 female) chronic stroke survivors (Age:
58.85 ± 6.12 years) participated in this study. The study
was approved by the Kessler Foundation Institutional Review
Board. All participants who volunteered for the study con-
sented and were screened for eligibility. The main inclusion
criteria were chronic stroke (stroke onset at least six months
before the consenting date) and have complaints of poor
hand dexterity. Patients with severe wrist spasticity scores
>3 (Modified Ashworth Scale) were excluded in addition to
any contraindications to TMS, tDCS, and MRI [9], [10].

B. MRI Data Acquisition and Processing

The MRI data of each participant was obtained at the
Rocco Ortenzio Neuroimaging Center at Kessler Foundation
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Fig. 1. The proposed workflow for the computational modeling of HD-tDCS in chronic stroke with lesions

using a Siemens Skyra 3T scanner (Erlangen, Germany). The
T1-weighted structural MRI scans were collected with the
specification as follows: 1-mm isotropic voxel resolution, TE
= 3 ms, TR = 2300 ms, 1-mm thick 176 slices, Field of View
(FOV) 256x256 mm2.

C. Identification of the motor hotspot using TMS Neuronav-
igation

After the participant underwent an MRI scan, his/her
motor hotspot corresponding to the First Dorsal Interosseous
(FDI) muscle was identified using Transcranial Magnetic
Stimulation (TMS). Subject-specific MRI was used for the
Neuronavigation system Brainsight (Rogue Research Inc,
Montreal, Canada) for TMS navigation. Neuronavigation
TMS using a figure of 8 coils (D702, Magstim) was applied
over the hand knob region of the ipsilesional motor cortex
(close to the electrode C3/C4 region contralateral to the
paretic arm) to probe for the location that produces max-
imal Motor Evoked Potential (MEP) from the FDI muscle
using the standard relative frequency procedure [11]. Surface
electromyography (EMG) was recorded from the paretic
FDI using a pair of Ag/AgCl electrodes in a belly-tendon
montage during an index finger abduction task using the data
acquisition system Powerlab from ADintruments (Sydney,
Australia). A site was identified as the target of interest for
TMS if an MEP (amplitude > 50 uV peak-to-peak) was
found for at least 6 out of 10 trials.

Using a grid-search approach, we probed the neighboring
sites and marked the one as Hand Motor Hotspot (HMH) if
it produced the MEP at the minimum single-pulse stimulator
output intensity. If we could not identify the HMH at rest,
we tried to hunt for the motor hotspot during submaximal
contraction (20% of the maximum voluntary contraction
of the FDI muscle). The site was considered the ‘active
HMH’ if the stimulation produced an EMG output of 0.1mV
larger than the background EMG during submaximal con-
traction. The HMH coordinates obtained from the Brainsight
Neuronavigation software were then transformed to MNI
coordinates.

D. Computational Modeling of HD-tDCS

In the proposed workflow shown in Fig. 1, we mainly used
the ROAST software (https://www.parralab.org/roast/), which
follows a realistic volumetric approach to model the electric
field distribution. As an end-to-end pipeline, the ROAST
toolbox can automatically process individual MRI scans to
generate the 3D rendering of the electric field (EF) distribu-
tion in the brain. As the electric field distribution is affected
by different layers in the brain, the conductivity values are
considered during the segmentation process handled by the
SPM12 toolbox (https://www.fil.ion.ucl.ac.uk/spm). We used
the default conductivity values recommended in ROAST
(white matter 0.126 S/m, gray 0.276 S/m, cerebrospinal fluid
1.65 S/m, bone 0.01 S/m, skin 0.465 S/m, air 2.5e-14 S/m,
gel 0.3 S/m, and electrode 5.9e7 S/m) [12] to obtain the e-
field distribution in different layers. Once the segmentation
is done using the CAT12 tool within SPM12 (Step 2A in
Fig. 1), the ROAST applies the user-defined parameters (such
as the electrode montage, electrode shape, current intensity,
etc.) in its getDP solver (Step 6) to solve the governing
equations of EF distribution. As a deviation from the regular
workflow, which is sufficient for the computational modeling
in healthy brains, we now present the integration of lesion
segmentation with the ROAST software (Step 3 in Fig. 1).

We used an automated approach to segment the chronic
stroke lesions in T1-weighted MRI using the LINDA
(Lesion Identification with Neighborhood Data Analy-
sis) toolbox available publicly [13]. The toolbox is
made publicly available http://dorianps.github.
io/LINDA/. The conductivity values of the lesion were
tested for different values (white matter, gray matter, and
CSF) to assess the effect of lesion on the EF distribution
after HD-tDCS. As ischemic stroke often results in cerebral
edema, which further causes the cerebrospinal fluid to fill
the vacuum [14], we believe the lesion conductivity values
may be similar to that of CSF. We highlight that the lesion
modeling is done such that the lesion is located over the
left hemisphere mainly because the LINDA model is trained
using the stroke MRIs with left lesions. For subjects with a
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lesion on the right hemisphere, the MR images were flipped
along the midline so that the lesion appeared on the left
hemisphere for all subjects.

In Step 4 (Fig. 1), the following configuration for Anodal
High-definition Transcranial Direct Current Stimulation (An-
odal HD-tDCS) was used: 4 × 1 ring electrodes were placed
over the ipsilesional area. For the simulation purpose, we
place the anodal electrode over the HMH identified using
TMS (explained earlier in subsection II.C), and 4 cathodes
were placed around the HMH in a 10-10 EEG montage
setup. The landmarks (nasion, left, and right preauricular
points) were previously identified during the TMS visit. In
the absence of Neuronavigated HMH, one can use the 10-10
EEG montage setup with C3 as the anode and FC3, CP3,
C1, and C5 as cathodes (if targeting left hemisphere). The
current injected was set at 2mA for the anode (C3), and
the outgoing current at each of the cathode was -0.5mA.
All these ring electrodes have an outer diameter of 12 mm,
an inner diameter of 6 mm, and a thickness of 1 mm. In
Step 5 (Fig. 1), a finite element mesh is generated using
iso2mesh within the roast tool. Since our goal is to assess
the effect of HD-tDCS on the motor behavior in chronic
stroke, we additionally processed the EF distribution in the
targeted ipsilesional primary motor (M1) area by creating a
mask of the corresponding Brodmann Area 4 using the WFU
Pickatlas ROI selection tool [15]. As the ROIs are defined
on the MNI152 template, we coregistered all the results
(including the lesion mask and the EF intensity values) to the
MNI152 template. Finally, we obtained the EF distribution in
the brain tissues (gray and white matter) comprising the M1
area. The results were also validated using another software,
SIMNIBS 3.2.4, by following the pipeline [16].

III. RESULTS

The results of the lesion segmentation are shown in Fig. 2
for those stroke subjects who had lesions in the M1 region.
The motor impairment in other cases could be due to the
subcortical stroke affecting the corticospinal tract. For the
sake of simplicity, we present the lesion mask identified
using LINDA, which is observable in the vicinity of the M1
region on the cortical surface.

MGS011 MGS012

Fig. 2. Cortical surface generated after integrating the lesion mask
generated using LINDA toolbox.

The results of the electric field and current density magni-
tude are shown for one of the subjects (MGS012) in Fig. 3.
In Fig. 3A, the histogram distribution of EF intensity values
is presented for white and gray matter and highlights the
peak EF magnitude. Fig. 3B illustrates the visualization of

TABLE I
MNI COORDINATES OF THE HAND MOTOR HOTSPOT IDENTIFIED USING

TMS NEURONAVIGATION VS. PEAK EF (MODELING)

TMS hotspot Peak EF
Subject ID x y z x y z
MGS001 -42 -38 68 -54 -28 56
MGS003 -38 -42 74 -54 -9 58
MGS005 -54 -5 55 -61 -7 47
MGS006 -50 -11 71 -53 -18 66
MGS010 -39 -51 66 -52 -30 57
MGS011 -35 -13 71 -54 -20 65
MGS012 NA NA NA -49 -21 62

TABLE II
PEAK ELECTRIC FIELD INTENSITY (IN V/M) FOR DIFFERENT

CONDUCTIVITY VALUES DETERMINED USING ROAST SOFTWARE

0.126 S/m 0.276 S/m 1.654 S/m
EFWM EFGM EFWM EFGM EFWM EFGM

MGS001 0.126 0.149 0.131 0.1448 0.124 0.1496
MGS003 0.247 0.475 0.247 0.5004 0.258 0.4715
MGS005 0.061 0.136 0.061 0.1352 0.062 0.1331
MGS006 0.150 0.133 0.152 0.1386 0.152 0.1386
MGS010 0.089 0.133 0.093 0.1377 0.092 0.1418
MGS011 0.202 0.164 0.213 0.1663 0.226 0.1534
MGS012 0.196 0.140 0.203 0.2382 0.189 0.1415

EF magnitude on the targeted site, and Fig. 3C presents the
current flow in different axes.
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Fig. 3. Simulation results of the current flow modeling in an exemplary
subject (MGS012)

In Table I, we present the MNI coordinates of the HMH
identified using TMS. One of the subjects (MGS012) did
not show any MEP at maximum stimulator output. These
coordinates were used for the simulation of current flow in
roast. In terms of the localization, the peak EF coordinates
(across gray and white matter tissues) had a mean distance
(mean ± std: 21.2 mm ± 11.3 mm, range: [9mm, 40.1mm])
from the TMS-derived HMH. This shows that the peak EF
coordinates derived from computational modeling can be
highly variable across participants. Interestingly, we found
that the coordinate of peak EF (based on modeling) was
found to be closer to the hand-knob location on the cortex
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defined in the literature [17] (MNI coordinate: [-40 -20 50])
(mean distance: 14.3mm ±2.4 mm) as compared to that of
TMS-derived HMH (mean distance: 25.4 ± 14.2 mm).

In Table II, the peak electric field intensities (EFwm and
EFgm corresponding to the white matter and gray matter
within the ipsilesional M1 region) are presented for different
conductivity values (0.126 S/m, 0.276 S/m, and 1.654 S/m
corresponding to the white matter, gray matter, and CSF
respectively). The rationale is that the lesion volume could
overlap different tissue masks (WM/GM/CSF). Based on
the Wilcoxon ranksum test, we did not find any significant
differences in EF values across conductivity values.

We noticed that the within-subject variability in the peak
EF magnitude (for different conductivity values of lesion
tissue) was less than between-subject variability (for a given
conductivity value). We suspect this observation is primarily
due to the differences in the hotspot location and anatomical
differences due to gray matter and white matter volume
across subjects.

IV. CONCLUSIONS AND FUTURE DIRECTION

In this paper, we demonstrated an automated workflow for
the computational modeling of current flow upon targeted
NIBS in chronic stroke with lesions. The preliminary results
suggest that despite using the same configuration in simulat-
ing the current flow, the stroke lesion location did not affect
the peak EF in the targeted region of interest.

Our study has certain limitations such as: (1) Identifying
the lesion mask in an automated manner is not foolproof,
as the manual lesion identification by trained radiologists
is still considered the gold standard. However, with the
current advances in the machine-learning-based segmenta-
tion of pathological MRIs, we believe the automated tools
will soon surpass the human-level performance, (2) The
co-registration of the subject MRI into the MNI template
can potentially introduce some registration errors. So, we
recommend cautious interpretation of the findings related to
the anatomical atlas-based region of interest. (3) To avoid
an extensive computational burden, we assume isotropic
conductivity values within each tissue in the current com-
putational modeling framework. We recommend the future
studies must integrate a computationally tractable framework
that considers anisotropic conductivity. With the proposed
approach of dose-controlled tDCS in [18] and our workflow
to estimate the EF intensity in the presence of lesions, we
believe adjusting the dosage for HD-tDCS based precision
neurorehabilitation in stroke is possible. As a follow-up to
this study, we are currently investigating the localization
accuracy in terms of the NIBS motor hotspot and the EEG-
based cortical source localization during hand contraction
motor tasks in chronic stroke. We hope that the EEG-
based source localization and the motor hotspot derived
from TMS and tDCS modeling will guide us towards de-
veloping personalized motor rehabilitation in stroke. Further,
our future work will investigate the effect of the weakened
structural integrity of the corticospinal tract on the tDCS
current flow as well as functional outcomes of motor tasks.

Considering the heterogeneity in stroke characteristics and
between-subject EF, future studies designing a personalized
NIBS intervention must consider the structural anomalies in
the brain.
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