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Abstract— Recent developments in ultra-high-throughput mi-
croscopy have created a new generation of cell classification
methodologies focused solely on image-based cell phenotypes.
These image-based analyses enable morphological profiling and
screening of thousands or even millions of single cells at a
fraction of the cost. They have been shown to demonstrate the
statistical significance required for understanding the role of
cell heterogeneity in diverse biologists. However, these single-
cell analysis techniques are slow and require expensive ge-
netic/epigenetic analysis. This treatise proposes an innovative
DL system based on the newly created capsule networks
(CapsNet) architecture. The proposed deep CapsNet model
employs “Capsules” for high-level feature abstraction relevant
to the cell category. Experiments demonstrate that our proposed
system can accurately classify different types of cells based
on phenotypic label-free bright-field images with over 98.06%
accuracy and that deep CapsNet models outperform CNN
models in the prior art.

I. INTRODUCTION

Image-based cell analytic methodologies enable under-
standing the cell heterogeneities and pattern development.
Analyzing target cell images allows understanding the under-
lying spatial biological relation and determining the complex
genetic and epigenetic-based workflows. The conventional
methods of single-cell analysis are known as chemical cy-
tometry [1] which is highly sensitive to analytical instru-
ments. The chemical cytometer process and reports the data
by quantifying one cell’s cellular contents simultaneously is
very expensive and time-consuming. The acquiring and ana-
lyzing of cell images are comparatively less complicated and
economic processes. The tasks involving high latency and
unprecedented processing throughputs such as cell screening
and large-scale label-free rapid cell profiling [2] makes
cellular image analysis a better alternative. However, the
microscopy technologies currently exist scarifies the image
fidelity by either producing high content images at low
throughput or vice-versa. As a result, capturing the cell
heterogeneity using image-based methodologies is still a sig-
nificant challenge. Therefore, high-content cell images with
high throughput are necessary for cell image analysis. Time-
stretch microscopy, a new enhanced imaging technique,
can help understand the cellular morphology and dynamics
more accurately [3] [4] [5]. Bright field cell microscopic
(BFCM) images obtained using Asymmetric-detection time-
stretch optical microscopy (ATOM) imaging technique [3]
can record ultra-fast, high contrast images of the human cells
at high throughput. These images have proved their efficacy
in detecting micro-particles in micro-fluid and can capture
the morphological properties of the cells very accurately [6].

In a recent study, Fourier spectrum and wavelet coef-
ficients have been used to extract useful information for
cellular identification [7]. Textural-based features such as
co-occurrence of adjacent local binary patterns (CoALBP)
have also been utilized to learn the complex adjacent image
micro-patterns distribution [8]. Recently, deep learning-based
integrated techniques capable of learning directly from the
training data have proven to outperform hand-crafted features
in multidisciplinary domain [9] [10] and also eliminating
the tedious process of selecting distinct feature extraction
methods. The deep convolutional neural networks (CNNs)
capable of extracting hierarchical and high-level features
have manifested outstanding performance on generic visual-
based recognition tasks such as in histopathological images
classification [11] [12] and cell recognition and segmentation
[13] [6]. Researches encompass rare events such as transition,
cancerization, and differentiation for characterizing hetero-
geneous behavior at single resolution cell. The capturing
of phenotypic changes of kinetic cells [14] and accurate
identification of cell characteristics requires High-content
screening (HCS) with high throughput, which relies on ac-
curate fluorescent labels [15]. Fluorescent images are widely
analyzed using CNNs models for learning staining patterns
[16]. However, Fluorescence microscopy is restricted to a
diffraction limit of ∼ 200nm for live-cell imaging, hence not
capturing biological structures in a near-native state [17].
Bright-field images open new possibilities in understanding
the biological cellular pattern. Recently, quantitative analysis
of single living cells using deep CNN resulted in a reduction
in curated time with high semantic segmentation accuracy
[18]. In contrast, a computation method for predicting living
cell division using dynamic features was reported in [19].
The alteration of morphology of colonies of embryonic stem
cells using BFCM images was reported in [20] and the
single-cell classification framework using (CNN) with to data
size stability analysis was reported in [6]. However, it fails
to utilize the spatial relations in biomedical imaging data due
to its complex tissue structure [21]. Capsule Network [22]
has been widely used in both segmentation and classification
in medical imaging. Recently, SegCaps [23] was proposed
for lung segmentation from CT scans via locally constrained
routing and transformation matrix, while brain tumor classi-
fication using MRI images via capsule network was proposed
in [21]. In this work, We have introduced a deeper modified
Capsule Network for multi-class cell classification. Capsule
networks are susceptible to various image backgrounds. Our
proposed deep CapsNet is more reliable with changes in
intensity variation in cellular images. The deep CapsNet
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Fig. 1. Block diagram of the proposed Deep CapsNet architecture for automated human somatic BFCM images classification.

model works better on intensity variation cell images as the
model trains on the principle of routing by agreement in
which the capsules predict the outcome of the parent capsule
at a lower level [21]. Accordingly, if the predictions agree,
the parent capsules are activated. The proposed model is
validated on more than 90,000 cell images to demonstrate
its potency for deployment in clinical settings. At the same
time, our experimental results outperform the existing state-
of-the-art and several pre-trained-based models. Furthermore,
our proposed deep CapsNet model eliminates the burden
of manual segmentation and detailed annotations by the
experts/radiologists. The main contributions can be recapit-
ulated as:
• A Capsule neural network architecture for cell pheno-

types classification framework, as shown in Fig. 1, is
proposed. The model outperforms the state-of-the-art
with better deep feature explainability.

• The Capsule framework leverages deep hierarchical
feature space relationships among different cell pheno-
types via deep instantiation parameters in a generalized
discriminative manner.

Ongoing, the paper is structured as follows: Section II
presents an overview of the previous works on cell classifica-
tion. Section III describes the technical intricacies of the deep
CapsNet architecture. Section IV discusses the experimental
results, showing the comparative performance. Section V
concludes the paper.

II. METHODOLOGY

A. Problem Formulation

The basic structure of CNN [24] comprises convolutional,
pooling, and fully connected layers capable of extracting
both higher-order local and elementary features. The com-
putational cost is reduced significantly as the weights are
shared over the whole input. The medical image processing
[25] is benefited by the fact that these networks prior
knowledge is non-essential to extract crucial features for
accurate classification of class labels. In general, the CNN
consists of K layers, the output Y (p−1) of layer p− 1, for
(2≤ p≤K), the output Y p is associated to the p input layer,
which is given as:

X (p)
i, j =

M−1

∑
a=0

M−1

∑
b=0

WabY (p−1)
i+a, j+b (1)

Y (p)
i, j = σ

(
X (p)

i, j

)
(2)

The pre-activation output and size of the kernel are denoted
by X (p) and M, respectively. The kernel matrix and the ac-
tivation function are determined as W and σ(·) respectively.
The CNN is also made translation-invariant by adding pool-
ing or sub-sampling layer, reducing the trainable parameters.
However, adding such layers makes it more difficult to com-
pute the exact location of the feature descriptors, resulting
in the network’s incompetence in recognizing object-based
images subject to different augmentation techniques [21].
Moreover, the images comprising different resolutions make
it more difficult for the network to extract the underlying
discriminative pattern. Our proposed deep CapsNet is invari-
ant to augmentation and performs significantly with intensity
variant images.

B. The proposed deep CapsNet Network

Deep CapsNet comprises a capsule with several neurons
that encompass different instantiation parameters like size,
rotation determining important features vector responsible
for apprehending the probability of the presence of under-
lying objects [22]. The squashing non-linearity function is
applied to construct a smaller length of such feature vector.
The Routing by Agreement procedure is utilized instead
of sub-sampling the feature maps of the pooling layers in
the standard CNNs. The capsule contribution relies on how
appropriately lower-level or child capsules predict the output
of the consequent or parent capsules. The parent capsules
account for the output of the child capsule only if an accurate
prediction is provided. More particularly, the output and
prediction of the lower-level i and higher-level j capsule can
be denoted as ui and û j|i respectively. A linear transformation
matrix Wi j is used to encode the relationship between i-th
and j-th capsule which are propagated as: û j|i = Wi jui. The
coupling coefficient ci j or the strength determines the actual
agreement between the predicted û j|i and the actual output
of s j of the parent capsule j and the activation vector v j of
j is also computed as follows:

v j =
||s j||2

1+ ||s j||2
s j

||s j||
, s j = ∑ci jû j|i (3)

During the routing by agreement procedure, the log proba-
bility of whether the capsule i and j needs to be integrated or
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not is signified as bi j. The inner product ai j between s j and
û j|i vector is taken to compute the similarity for updating bi j
which is initialized to zero during the start of the training.
Therefore ai j is iteratively added to bi j as follows:

ai j = s j.û j|i (4)

while the softmax function is used to set the coupling
coefficient ci j as follows:

ci j =
exp(bi j)

∑
K
k=1 exp(bik)

(5)

Where, the number of capsules is denoted as K. Each capsule
j, for (1≤ j ≤ K) a corresponding loss function is coupled
with the last layer. The decoder is referred as fully connected
layer which utilizes the the final instantiation parameters of
the true classes as inputs to capture the hard to discern real
representative features.

In comparison to the capsule loss, decoder contributes to
the final error of the model with smaller weight. We utilized
the margin loss proposed in [22] so that the top-level capsule
k have a larger length only if k(k ∈ {0,1}). The sum of the
losses is the total margin loss L j which is computed as:

L j = ∑
k

[
Tjmax(0,m+−||v j||)2

+λ (1−Tj)max(0, ||v j||−m−)2

]
(6)

Where, Tj = 0 where class j is not present and Tj = 1
otherwise. The hyper parameter are initialized before the
learning process and are denoted as m+ = 0.4, m− = 0.2 and
λ = 0.7. The reconstruction loss Lr and the total loss LTotal
is computed by the sum of squared differences between the
input and reconstructed images as [26]:

LTotal = L j +αLr (7)

where, the α = 0.0005 to minimize the reconstruction loss
and scale down the margin loss during the learning phase.

III. EXPERIMENTAL RESULTS

A. Dataset Description

The proposed deep CapsNet model was validated on
an open-source dataset available from 1. The images were
captured using ATOM imaging which provided significant-
good cellular resolution, label-free, and high-contrast flow
imaging. The dataset mainly comprises four classes MCF7,
THP1, PBMC, and MB231. deep CapsNet model was trained
on more than 1,00,000 images. The cell images were cap-
tured in different resolutions and focus at a very high speed
to enhance the classification complexity of the images. The
representative bright field cell microscopic images for all
four classes are given in Fig 2. The resolution of cell
images vary from 21×102 to 68×440 pixels. The primary
objective is to model a robust classification model capable
of classifying these cell images that are not sensitive to the
representations of non-identical cell types images, capable of
performing with higher accuracy and reliability. More details
about the dataset can be found in [6].

1https://ieee-dataport.org/documents/
human-somatic-label-free-bright-field-cell-images

Fig. 2. Representative Bright field cell microscopic images. Each row
represents a specific type, from top to bottom: MCF7, THP1, PBMC and
MB231

B. Experimental Settings & Performance Evaluation Metrics

The proposed deep CapsNet has been implemented using
Tensorflow and Keras libraries in Python (Version: 3.5.2)
programming environment. The hardware system comprises
AMD Ryzen 7 3700× CPU (8 Cores/16 Threads), 64 GB
of DDR4 RAM, NVIDIA RTX 3080 10GB VRAM graphics
processing unit (GPU) while the software system includes
Ubuntu 20.04 LTS ×64 OS with CUDA-enabled GPU as
the parallel computing platform. The BFCM image dataset
is split in the ratio 60%:20%:20% for training, validation,
and testing. The distribution of cell images for each category
was made uniform using the proper image augmentation
technique to eliminate the class imbalance problem during
the training phase. The proposed deep CapsNet network
architecture can be traced in Fig 3. We utilized the Adam
optimizer [27] with a learning rate and batch size of 10−3

and 32 respectively to ensure faster convergence during the
training. A dropout rate [28] of 5% and L2-regularization [29]
is used to prevent model over-fitting. The evaluation metrics
for cell image classification are divided into true-positive
(TP), false-positive (FP), and false-negative (FN), where TP
and FP determine the positive class cardinality of correct
and incorrect predictions. In contrast, the FN determines the
negative class. The multi-class classification assessment of
deep CapsNet is tested based on the TP, FP, and FN values
by the following performance evaluation metrics:

Accuracy =
T P+T N

T P+T N +FP+FN
(8)

Recall =
T P

T P+FN
(9)

Precision =
T P

T P+FP
(10)

F1 =
2×Precision×Recall

Precision+Recall
(11)

The macro average is used to compute the overall precision,
recall and F1 score ensuring that deep CapsNet performs well
both on common and rare classes of the BFMC images.

Macro P =
∑

c
i=1 Precisioni

c
(12)
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Fig. 3. From left variation of training and validation accuracy, total loss, and encoder and decoder loss of deep CapsNet model over the epochs during
network training.

Fig. 4. Visualizing sample images (1st row) from the BFCM input image dataset, corresponding Grad-CAM localization of the ROI with the ResNet152V2
model (2nd row), and deep CapsNet model (3rd row).

Macro R =
∑

c
i=1 Recalli

c
(13)

Macro F1 =
∑

c
i=1 Precisioni

c
(14)

C. Classification Results with the Proposed Model

The proposed deep CapsNet model has been evaluated on
more than 1,00,000 images BIHM images [30] and evaluated
using the performance evaluation metrics defined in Eqs.
(8)–(14). The deep CapsNet accuracy, encoder, and decoder
loss, and overall loss with increasing epoch are shown in
Fig 4. It is observed that during the training, regardless
of minimum fluctuation during the ascent, the accuracy in-
creases continuously in successive iterations. The test dataset
is fed into the deep CapsNet framework after re-slicing and
shuffling. The data point generates independent changes on
the model during the update without being biased, reducing
variance and over-fitting. The validation loss drops while the
validation accuracy increases and attains stability after 20
epochs, approximately signifying high convergence of the
proposed model. According to the evaluation metrics, the
deep CapsNet’s high performance exhibits the capability to
extract representative linearly separable underlying biologi-
cal patterns from the BHFM images. Table I provides more
comprehensive results of the classification performance. The
average of several experimental results is taken to compute
the final indices. More quantitatively, the overall accuracy
score 98.06%, Macro P = 97.76%, Macro R = 96.89%,
and Macro F1 = 97.31% is determined. Table I indicate
the class-specific indices of the deep CapsNet in terms of
categorization and model assessment.

TABLE I
CLASS-SPECIFIC EXPERIMENTAL RESULTS

Metrics MCF7 PMBC THP1 MB231

Precision 96.87 98.22 98.18 98.18

F1-score 96.40 96.79 98.75 98.75

Recall 95.94 95.39 99.34 99.34

IV. DISCUSSION

A. Comparative Evaluation of the deep CapsNet

1) Comparison with Pre-trained Models: Transfer learn-
ing (TL) using pre-trained deep learning models have been
widely used as state-of-the-art image classification tech-
niques. To prove the efficacy of our proposed deep CapsNet,
we compared our performance with the pre-trained deep
learning models. We fine-tuned all the pre-trained models
to adapt deep discriminative feature pertaining to our clas-
sification. The current ImageNet weights [31] trained on
more than 1000 classes, mean squared error (MSE) loss,
and stochastic gradient descent (SGD) optimizer [32] was
used for training and validation purpose. Deep CapsNet
captured vital cell heterogeneous features that reflect superior
classification performance significantly with every successive
iteration compared to other TL models. In Fig. 4 and Fig. 4,
the validation accuracy and loss over the epoch are given. In
Table II. the quantitative comparison of the performance rate
of the proposed deep CapsNet with other TL models is given.
From Table II, it can be seen that deep CapsNet surpasses the
recognition rate of more than 13.04% for ResNet50 while
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with the nearest competitor of 2.34% for ResNet152V2.
Our proposed model beat all the existing TL models with
comparable trainable parameters and reduced network depth.

Fig. 5. Variation of accuracy in different pre-trained and deep CapsNet
model over the epochs during network training.

Fig. 6. Variation of loss in different pre-trained and deep CapsNet model
over the epochs during network training.

TABLE II
COMPARATIVE EVALUATION OF PRETRAINED NETWORKS TRAINED ON

BFCM DATASET.

Network Depth PM Accuracy (%)

ResNet50 N.A 85.63 85.20

ResNet101V2 N.A 44.70 95.33

ResNet152V2 N.A 60.38 95.72

VGG16 23 138.3 93.39

VGG19 26 143.6 91.38

DesnseNet121 121 8 95.28

InceptionResNetV2 572 55.87 94.41

InceptionNetV3 159 23.85 93.19

Xception 126 22.91 95.13

MobileNetV2 88 3.53 91.19

This Work 3 21.61 98.06

B. Visual Explanations of Deep CapsNet Inference

The emergence of explainable artificial intelligence (XAI)
provides a better understanding in decoding the black-box
nature of DL framework’s [33]. Models like deep CapsNet
are trained on the whole images rather than labeled or
extracted ROI. Recently proposed, gradient-weighted class
activation mapping (Grad-CAM) aids in understanding the
DL prediction with visual clarification [34]. The emergence
of Grad-CAM, an attention visualization tool that assists
in visualizing where a DL model is finding its ROI and
understanding the decision of neurons based on the lo-
calization of the ROI. As illustrated in Fig 6. the deep
CapsNet model recognizes the categories of BIHM whole-
cell image pixels manifesting textural and cell boundaries.
ResNet152V2 model is the nearest competitor to the pro-
posed deep CapsNet model, which is also in agreement with
the prior art [26]. As such, the ResNet152V2 model is chosen
for understanding the visual explanation depicted by the
Grad-CAM analysis. The Grad-CAM visualization generates
the deep learning model’s heat-map localization ROI in
decision-making. The deep CapsNet exhibits better visual
certainty in varying environments and more comprehendible
than the ResNet152V2 model’s heat-map ambiguities.

C. Analysis of the Network Performance

The ATOM imaging system is a unique imaging approach
which opens new possibility in understanding complex bi-
ological pattern while achieving high-contrast flow label-
free imaging with significantly better cellular resolution at
a higher speed. This work is the first to envisage capsule
network architecture in BHCM images with outperforming
all TL models and present state-of-the-art to the best of our
knowledge. The Grid search utilized in the same parameter
space for hyper-parameter optimization efficiently optimizes
the deep CapsNet model with improved learning consistency.
The proposed architecture achieves high classification ac-
curacy, making predictions based on whole-images rather
than the ROI-based localization or segmentation approach
in the conventional DL framework. The ability of the deep
CapsNet network in reducing the high inter-class similarity
and intra-class diversity in BHCM images demonstrates its
efficacy from its predecessor. Henceforth, manifesting robust
generalization incorrectly identifying images captured using
ATOM-based imaging systems.

V. CONCLUSION

This article presents a deep Capsule network-based auto-
mated single-cell image classification system. The architec-
ture comprises four convolutional layer kernels, PrimaryCaps
layer, DigitCaps layer, and two fully connected layers and
ReLU activations precede max-pooling layers with batch nor-
malization operations in the network. We provide a concise
overview of various aspects of this approach and address the
impact of data volume on classification results, demonstrat-
ing that larger datasets support deep learning models. The
suggested system outperformed other often-used approaches
in experimental validation on large-scale dynamic datasets.
With label-free photographs, the proposed method achieves
over 98.06% accuracy in distinguishing different types of
cells.
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