
Abstract— This study aims to understand human behaviors 
and associated injury causing factors in underground mines 
using data analytics of historical mining data. Decision tree and 
association rule were used to provide a statistical analysis of 
leading factors of hazards in underground mines. Based on the 
results, we were able to explore hazard feature identification 
using image feature recognition aiming to provide real-time 
monitoring for miners to secure healthy and safety operation via 
wearable computing. 

I. INTRODUCTION

Mining is one of the hazardous professions and associated 
with a high level of accidents and injuries [1], [2]. According 
to the newest report in 2019 from the National Institute for 
Occupational Safety and Health (NIOSH) [3], mining 
industry is still occupying the top spot as per accident 
statistics out of all industries with an average fatality rate of 
25 per 100,000 full-time equivalent employees. According to 
the National Mining Association, the total jobs supplied by 
domestic mining are 2,111,230 in the United States [4]. Based 
on an average family size of 2.58 people per household 
(Census.gov), it is estimated that the mining-related 
population is over 5 million. Numerous strategies have been 
proposed in reducing mining fatalities and injuries in recent 
years; however, both the number and severity of mining 
accidents remain high compared to other industries, 
especially in underground mines [5]. 

Previous studies and reports have shown that the serious 
accident and injury rates in underground mines mainly result 
from unsafe working conditions, unsafe practices, or a 
combination of both [6]-[9]. In underground mines, the 
extreme working conditions with higher humidity, darker 
environment, and more enclosed space can significantly 
reduce workers’ situational awareness and thus cause higher 
human errors, which has been well recognized in mining 
industry [10]. Statistics show that performing the risk 
assessment and finding the common cause of human errors can 
effectively provide preventive, proactive strategies to reduce 
human errors [11].  

Thus, the goal of this paper is to understanding human 
behaviors and associated injury causing factors in 

underground mines using data analytics, the result of which 
will serve as the foundation of future technology development 
to improve human health and safety in this relatively 
hazardous working environment. Based on the results of data 
analytics, we were able to explore hazard feature identification 
using image feature recognition in order to provide real-time 
monitoring for miners to secure healthy and safety operation. 
The targets provide the capability of answering when and what 
to recognize in various conditions to save computation 
resources to achieve real-time wearable computing. 

II. DATA ANALYTICS

A. Historical Data
We use historical mining accident data available from the

Centers for Disease Control and Prevention (CDC) [59] and 
Mine Safety and Health Administration (MSHA) [60] to 
understand human behaviors and identify key factors causing 
injuries in undergraduate mines. The raw dataset from MSHA 
[60] contains information on all accidents, injuries and
illnesses reported by mine operators and contractors
beginning on 1/1/2000, which is obtained from the Mine
Accident, Injury and Illness Report form (MSHA Form 7000-
1). The raw data file provides information about the
accident/injury/illness such as type, mine location, lost days
and the degree of injury. A total of 236,474 cases occurring
during the period of 2000–2019 are included in our data
mining process, which are the entire available cases.

B. Variables
The raw data records different information about the 

injured coal mine employees, including the worker’s ID, 
manufacturer of mining equipment, time and location, injury 
information and so on. To ensure the measurability of 
variables in this paper and the realizability of research, ten 
variables were selected by considering criteria such as our 
previous experience and other results published on this topic, 
and the risk level of human errors (RLHE) was predicted as 
target variables. Variable definitions of injury information are 
listed below: 
    Activity: specific activity the accident victim was 
performing at the time of the incident. 
    Part (body part of injury):  identifying the part of the body 
affected by an injury 
    Nature of injury: The nature of injury identifies the injury in 
terms of its principle physical characteristics. 
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    Source of injury: identifying the object, substances, 
exposure or bodily motion which directly produced or inflicted 
the injury. 
    Mining method (underground): Description of the 
underground mining method where the accident/injury/illness 
occurred.   
    Location: Description of the underground location where 
the accident/injury/illness occurred. 
    Occupation: the accident victim's regular job title. 

The decision tree of data mining was used to analyze the 
regularity of the impact factors (including experience, 
occupation, time) on the number of human errors. The 
association rules of data mining were used to explore the 
interrelationships among nature of injury, part (body part of 
injury), source of injury, time, location, mining method and 
risk level of human errors.  

C. Data Mining  
1) Decision tree 
First of all, a decision tree was implemented for 

identifying significant variables due to the limited number of 
variables in the mine data. The principle of decision tree is to 
select or combine attributes according to certain measurement 
criteria, to divide the sample set and obtain the corresponding 
branches. Recursion from root node to leaf node makes all 
samples in each leaf node belong to the same category. 
Finally, the new data are used in classification or forecasting 
based on these rules.  

The key of decision tree learning is to choose the optimal 
partition attribute at each split node. In the process of division, 
the samples contained in the branch nodes of the decision tree 
belong to the same category as much as possible. Due to the 
advantages of fast calculation and generating understandable 
rules, CART algorithm is applied in this paper to analyze the 
affecting factors of human errors in coal mine safety. The 
prediction process is made based on historical data and the 
decision tree gives the forecast model and classification 
model with high precision, stability and easy interpretation. 

Gini Index is a method to measure the impurity of data. In 
CART algorithm, Gini index is used to construct binary 
decision tree. The calculation method of Gini index is shown 
in (1): 
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Gini D P= − ∑                           (1) 

where D  represents all samples of the dataset and iP  
represents the probability of each category. In an extreme 
case, if all samples in the data set are of the same type, then

0 =1P , ini( ) 0G D = . Obviously, the data has the lowest 
impurity. The larger the Gini index is, the higher uncertainty 
of the sample set will be. The essence of classification 
learning process is the reduction of sample uncertainty (i.e. 
entropy reduction process).  

For the discrete value processing of CART classification 
tree, the idea is to split the continuous binary discrete feature. 
CART classification tree will consider the following three 
cases: A is divided into {A1} and {A2, A3}, {A2} and {A1, 

TABLE I DATA PREPARATION AND MINING FOR INJURY CAUSING FACTORS IN THE HISTORICAL DATA 

Causing Factors Searching  
abb. 

Variable  
type 

Text symbol 

Occupation Oc Discrete Serviceman, maintenance man, mechanic, boilermaker, fueler 
Location Lo Discrete Crosscut, face, intersection, vertical shaft, office 
Time Ti Discrete Day shift, middle shift, night shift 
Nature of injury Na Discrete Sprain, fracture/chip, cut/lacer/puncture, electric, bruise, 

burn/chemical fume, multiple injuries 
Body part of injury Pa Discrete Shoulders, fingers/thumb, eyes, hand, back, knee, thigh, leg, 

low leg, body system, mouth/lip/teeth, foot, chest, wrist, 
forearm, internal organs, ankle, jaw, face/multiple parts, 
hips, trunk, elbow, neck, head, ear. 

Source of injury So Discrete Caving rock, timber, steel rail, belt conveyors, knife, ladders, 
boiler, axe/hammer, hand tools, mine jeep, pipe/wire, 
doors, roof  

Mining method Mm Discrete Continuous mining, conventional stopping, caving, hand, 
longwall 

Month Mo Continuous Jan, Feb, Mar, Apr, May, Jun, July, Aug, Sep, Oct, Nov, Dec 

Risk Level of  
Unsafe Behavior 

  RLUB Discrete A= low risk; B= medium risk; C= high risk 

 

 
                      (a) Location                                          (b) Mining method                                       (c) Nature of injury 

 

 
                                                   (d) Activities                                                            (e) Source of injury 

Fig. 1. The statistical results of leading factors. 
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A3}, {A3} and {A1, A2}, and find the combination with the 
smallest Gini index. If A is divided into {A2} and {A1, A3}, 
then it will establish the binary tree node, one node is the 
sample corresponding to A2, and the other node is a node 
corresponding to {A1, A3}. 

2) Association rules
In our association analysis method, it was able to mine the

potential connections in the large dateset. The mining results 
can be represented by frequent sets and association rules. The 
mining process of association rules mainly consists of two 
stages: the first stage is to find out all frequent item sets from 
the data set, and the second stage is to generate association 
rules from these frequent item sets. In our study, Apriori 
algorithm was adopted to study the association rules among 
the mining method, time, nature of injury, body part of injury, 
source of injury, location and month. Finding the strong 
association rules between variables can manage the coal mine 
employees with a focused goal, and increase the detection rate 
of human errors. 

III. RESULTS AND DISCUSSION

A. Statistical Results
The statistical results of variables mentioned above are 

significant for miner safety management. The number of 
injuries in coal mine from 2000 to 2019 fluctuated every 
month. The rate was large in August, October and January, 
which were over the average number of 5,700. Furthermore, 
there is higher accidents rate on these months, because the 
cold weather result in rises in the daily workload of 
employees, and the coal industry should focus on these 
months. The number of human injuries was the lowest in 
December maybe due to the holiday season.  

Figure 1 shows the statistical results of injury 
information of coal mine employees by using high-frequency 
word extraction algorithm, and the integrated development 
environment. In Fig. 1(a), the location including face, 
crosscut, intersection is the relatively large proportion, 
accounting for 44%, 31% and 13% respectively. Companies 

should focus on the improvement of equipment applied on 
these body part. In addition, other body part including hand, 
shoulders, ankle, foot, neck, head and hip also cannot be 
ignored. The mining method of continuous mining is the most 
likely cause of human error as demonstrated in Fig. 1(b). In 
pie chart (c), the percentage of sprain/strain, 
cut/lacer/puncture, fracture/chip and bruise account for 32%, 
27%, 19% and 10% respectively. Knowing specific activity 
that the accident victim was performing at the time of the 
incident is important for analyze human error. Fig. 1(d) shows 
that employees have greater chance of injury when they are 
handling supplies/material, walking/running, handing tools 
(not powered), machine maintenance and handling roof 
bolter. As seen in pie chart (e), caving rock, mining 
floor/bottom, covers/guards and metal/pipe/wire are the main 
source of injury, accounting for 16%, 12%, 12%, 9% 
respectively. 

B. Analyzing Human Error by Harnessing Decision Tree
and Association Rules
Three independent variables (i.e., occupation, experience 

and time) and the categorical target variable (risk level of 
human error) were used to distinguish what type of person 
were more prone to human errors. For the convenience of the 
study, (L, M, H) represent (low, moderate, high) risk level of 
human error. In the process of splitting the classification tree, 
the occupation with 3 as the divisor was used in the first split. 
The number (1, 2, 3, 4) represent (laborer/bull gang, 
maintenance man/mechanic/serviceman, motorman/conveyor 
man/trackman and leadman/supervisor) respectively. When 
occupation equals 1 and 4, it comes to the terminal node with 
(L=2208, M=2460, H=96) and (L=537, M=581, H=9), which 
means the best variable for human error is occupation. Based 
on the occupation, the experience is used to split the third 
node layer, and four branches were produced to classify 
human errors. When occupation equals 2 and 3 and the 
employees’ coal mine experience less than or equals 4 years, 
the human error results are (L=865, M=993, H=28) and 
(L=1220, M=1312, H=41) respectively. After that, when the 
experience exceeds 28, the fifth node layer predicted 23.7% 

TABLE I THE THIRTEEN BEST RULES FOR RISK LEVEL OF HUMAN ERROR OUTPUT VARIABLE. 
Rule Association RLHE Support Confidence 
1 {So=caving rock, Mm=continuous mining} = > RLUB=M 0.046 0.826 
2 {So=mine floor/bottom, Na=sprain } = > RLUB=M 0.031 0.666 
3 {Pa=knee, Na=sprain } = > RLUB=M 0.035 0.741 
4 {So=caving rock, Ti=night, Lo=face} = > RLUB=M 0.050 0.709 
5 {Pa=back, Ti=day, Na=sprain } = > RLUB=M 0.054 0.820 
6 {Lo=crosscut, Na=sprain, Ti=day} = > RLUB=M 0.037 0.559 
7 {Lo=face, Ti=day, Na= cut/laceration/puncture, 

Mm=continuous mining} 
= > RLUB=M 0.049 0.780 

8 {Pa=finger/thumb, So=knife, Na=cut/ laceration /puncture } = > RLUB=M 0.056 0.983 

9 {So=electric cable, Pa=back, Na=sprain} = > RLUB=M 0.047 0.949 
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(68/287) of the human errors with moderate risk under the 
conditions that the time is daytime. On the right side of the 
decision tree, when occupation equals 2 and experience more 
than or equal 28, the human error result is (L=62, M=36, 
H=1). By analyzing the decision tree, we can draw a 
conclusion that the human error is relatively low when their 
occupation equals 4, when they are working on the daytime. 
Furthermore, employees whose experience is less than 4 years 
will have relatively higher possibility to cause human error.     
    Table 1 summarizes the 9 association rules of human 
error using CART tree. Firstly, Rule 1 illustrate that 
employees are more likely get injured from caving rock 
when they are continuous mining, and the confidence 
level of this association rule is 0.826. Rule 8 shows the 
highest confidence level of 0.983, that is, when their source 
of injury was knife, their body part of injury was prone to 
finger/thumb, and the nature of injury was cut/laceration/
puncture. Therefore, the knife of the mining machine was 
the vital checking up area when employees hurt their 
finger/thumb. Rule 7 shows that when people were 
continuous mining in the daytime on the face location, 
and they got a cut/laceration/puncture, they were prone 
to a moderate-risk human errors with 0.780 confidence.  

C. Potential for Real-Time Monitoring
As for the American coal mine industry, the association 

rules showed in Table 1 are of great significance to the coal 
mine safety supervision, and it helps identify when, where and 
what type of human error occurs, and allows people to avoid 
injury from working in coal mine. Figure 2 shows an 

exploratory study of feature identification in an underground 
mine in Greenland, Michigan. 

IV. CONCLUSIONS

This paper analyzes the leading factors of human injuries 
in underground mines based on data mining of the historical 
data. The results obtained by high-frequency word extraction 
algorithm indicate that people’s fingers/thumbs are the most 
vulnerable body part when they are working in the coal mine. 
The number of human errors is the highest when they are 
handling supplies/materials, and they should be careful of the 
danger from caving rock. In the decision tree process, we 
found that if their occupation are laborer/bull gang or 
maintenance man/mechanic/serviceman, they will have 
higher possibility to cause human error. In addition, 
employees who have longer working experience in coal mine 
will have fewer number of human errors, potentially because 
they have developed more skills to handle the operating 
environment and complicated geological conditions. Based 
on these results, we were able to attempted hazard 
identification in underground mines. Our future work will be 
focused on real-time identification via wearable computing. 
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