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Abstract— Respiration rate is considered as a critical
vital sign, and daily monitoring of respiration rate could
provide helpful information about any acute condition in
the human body. While researchers have been exploring
mobile devices for respiration rate monitoring, passive and
continuous monitoring is still not feasible due to many usability
challenges (e.g., active participation) in existing approaches.
This paper presents an end-to-end system called RRMonitor
that leverages the movement sensors from commodity earbuds
to continuously monitor the respiration rate in near real-time.
While developing the systems, we extensively explored some
key parameters, algorithms, and approaches from existing
literature that are better suited for continuous and passive
respiration rate monitoring. RRMonitor can passively track the
respiration rate with a mean absolute error as low as 1.64 cycles
per minute without requiring active participation from the user.

Clinical relevance— This work enables continuous monitor-
ing of respiration rate during daily life that has significant
potential for detecting abnormal changes in respiration rate.

I. INTRODUCTION

Continuous monitoring of respiration rate has a significant
impact on general health and wellness. Typically, an adult
takes 12-20 breaths per minute (BPM), and any sudden
changes in regular breathing rate often indicate the onset
of lung condition deterioration and acute illness [1]. For
example, several clinical studies suggest that an adult with a
high (>24 BPM) or low respiratory rate (<8 BPM) is likely
to have an underlying health problem [2], [3]. Fieselmann et
al. [4] reported that a breathing rate over 27BPM in the last
72 hours could be a strong predictor of cardiac arrest. While
clinical researchers emphasized the importance of monitoring
the respiration rate daily, it is challenging to monitor outside
clinical contexts as monitoring requires specialized devices.

In recent years, researchers have been actively investigat-
ing a more accessible approach to monitor the respiration
rate by utilizing low-cost mobile [5], [6] and wearable [7],
[8] devices. By leveraging the motion sensors from mobile
devices, previous works showed that it is feasible to estimate
the respiratory rate outside of the clinical contexts. While the
proposed methods are promising, there can be many chal-
lenges in developing the algorithms on mobile devices. For
example, some solutions may consume significant computing
resources, making the approaches infeasible for continuous
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monitoring. We also need to make several trade-offs between
accuracy and resource consumption to keep the monitoring
solutions lightweight. We do not have a good understanding
of such trade-offs that we need to make to develop an end-
to-end solution for respiratory rate monitoring.

In this work, we extensively investigate the key trade-offs
to develop a lightweight end-to-end system called RRMoni-
tor for passive and continuous respiration rate monitoring.
RRMonitor utilizes the motion sensors from commodity
earbuds and estimates the breathing rate by employing a very
lightweight zero-crossing rate-based breathing algorithm. In
this work, we have focused on earbuds by considering several
design decisions. First, recent work [9] has shown that it
is feasible to monitor the respiration rate using the inertial
sensors from earbuds with reasonable accuracy. Second,
while most solutions require active participation from the
user (e.g., users need to put the devices on their chest
or abdomen), earbuds can provide a more passive solution
without requiring too much attention from the user. More
than 30% people spend roughly 3-4 hours per day listening to
music on their headphones/earbuds [10]. While the users are
using their earbuds for their daily purposes, RRMonitor can
continuously monitor the breathing rate without interfering in
their daily activity. Third, earbuds are very closely positioned
to the nose, a crucial breathing organ, enabling a more
robust solution. Finally, modern earbuds can be coupled with
smartphones; hence, we can leverage the computing power
of mobile devices for processing. We only focused on motion
sensors instead of other high fidelity sensors (e.g., audio) to
reduce computational complexity and memory usage.

We develop RRMonitor utilizing the motion sensors col-
lected from Samsung earbud and smartphone. We investigate
the key parameters and algorithms for RRMonitor on a
breathing dataset collected from 30 individuals. Our system
can monitor the respiration rate in near real-time without
consuming significant resources (2-3% resources). The main
contributions of this paper are: 1) We present an end-to-end
system for breathing monitoring using the motion sensors
from commercial earbuds, and 2) We empirically investigate
the key parameters and algorithms that are better suited for
a lightweight continuous monitoring solution.

II. RELATED WORK

Previous works extensively studied techniques for extract-
ing breathing rates utilizing inertial and acoustic sensors from
commercial mobile and wearable devices. Nam et al. [11] use
the sound recordings by placing a mobile phone underneath
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the nose to estimate the respiration rate. While audio-based
approaches have demonstrated promising results, processing
audios on the phone require heavy CPU usage, which is not
feasible for continuous monitoring. Although earbuds are
exceptionally well-positioned for acoustic-based breathing
monitoring, in this work, we only considered motion sensors
to keep the system lightweight.

Approach Device Algorithm MAE (BPM)
Zephyr [5] Phone FFT 0.6 (median)
InstantRR [6] Phone FFT, ZCR, & Peak 0.85-4.82
BioWatch. [7] Watch FFT 0.19-0.72
SleepMonitor [12] Watch FFT 0.72
WearBreathing [8] Watch RF + CNN 1.09-2.05
Röddiger et al. [9] Earphone FFT 2.62
BioGlass [13] Glass FFT 0.8-1.77

TABLE I: Overview of approaches that use inertial sensors
to estimate breathing rate (MAE = mean absolute error).

Table I presents an overview of the approaches that
leverage the inertial sensors from the phone, watch, and
head-mounted devices to estimate respiration rate. As can
be seen in Table I, most approaches use an FFT-based
algorithm to calculate the respiratory rate. While the FFT-
based algorithm demonstrated impressive performance, zero-
crossing rate (ZCR) based algorithms require fewer comput-
ing resources. In this work, we implement the FFT, ZCR,
and Peak-based algorithm by following the InstantRR [6].
We did not consider the Random Forest (RF) and deep
learning approach proposed in WearBreathing [8], to restrict
computational resource usages on smartphone.

III. SYSTEM OVERVIEW

Figure 1 shows the architecture of our end-to-end RRMon-
itor system. As can be seen in Fig.1, we have three key
components: 1) Data Preparation for the data recording,
transmission, and aggregation of the motion sensor data for
breathing signal processing; 2) Breathing Signal Processing
Pipeline for filtering and processing the earbud motion sensor
data to estimate the respiratory rate, and 3) User-Interface for
displaying the respiratory rate to the user. RRMonitor contin-
uously collects data from earbuds and shows the respiration
rate to the user in near-real-time. If the user is in a resting
position, RRMonitor updates the interface every second. We
perform several experiments to find the suitable parameters
and algorithms to accommodate our design goals. In this
section, we describe the key components of RRMonitor and
define various parameters that need to be adjusted. Our
experimentation results are provided in Section IV.

A. Data Preparation

The earbuds are generally kept in the charging box. When
the earbuds come out of the charging box, the system starts
collecting the sensor data and transmits it to the paired phone
using Bluetooth. The system stores the recorded data on the
phone until the buffer length is greater than the predefined
window length. We provide more details in the following:

1) Recording: We use a Samsung Buds Pro for our
RRMonitor system, which contains a 3-axis accelerometer
and 3-axis gyroscope. Buds Pro also provides a wear status
and capable of recording the measurements at an average
sampling rate of 80 Hz. However, we experimented with
various sampling rates fs to reduce memory usage.

2) Transmission: As earbuds have minimal memory, the
recording needs to be transferred to the phone instanta-
neously. Therefore, once the recording is started, the system
sends the 12-axis measurements (6-axis motion sensors from
each earbud) and wear status to the paired phone in small
chunks. We can consider that the system sends the recorded
data in small chunks. As the system needs to rely on
Bluetooth for data transmission, it is expected that some
signals will be lost. Earbuds provide a kernel timestamp to
handle the data missing issues.

Buds Pro has two separate earbuds: one for the left ear
and another for the right ear. However, during our initial
exploration, we noticed that the data missing rates are higher
when the buds transmit the measurements from both earbuds.
Therefore, RRMonitor randomly picks the sensor data from
one earbud and sends it to the phone.

3) Data Buffers: The breathing module operates on a
sliding window of the motion data buffer. We experimented
with various window Ws and step sizes Ss for the IMU
data buffer and evaluated their impact on accuracy. Since a
normal breathing cycle can be between 3–5 seconds, we need
at least 2 to 3 cycles to estimate the respiration rate more
accurately. Hence, RRMonitor has an initialization period
in the beginning. The initialization period depends on the
window length, as the system needs to populate the whole
data window. After that, the system computes the respiration
rate at a regular interval, depending on the step size.

B. Breathing Signal Processing Pipeline

For breathing processing pipeline, RRMonitor follows a
combination of approaches described in SleepMonitor [12],
InstantRR [6], and Zephyr [5]. The steps of our pipeline are
depicted in the blue shaded region of Figure 1:

1) Window Selection: As explained earlier, some sensor
data might get lost during data transmission. Therefore, we
check the timestamp difference of each consecutive sample
and discard the instances where the timestamp difference is
higher than 250ms. If more than 20% data is missing, we
drop that particular window. Our system also discard win-
dows if the head movement is high. Similar to SleepMoni-
tor [12], we calculate the total acceleration (

√
a2x + a2y + a2z)

to estimate the head motion. Since the accelerometer also
contains the gravity, the total acceleration should be closer
to gravity, when the user is in resting position and motionless.
We discard the windows if more than M% samples are above
10 m/s2. We selected this threshold of 10 m/s2 by following
SleepMonitor [12]. We notice that if we keep M smaller,
then a large number of windows are discarded. We explore
the suitable range for M in Section IV.
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Fig. 1: The RRMonitor system architecture that utilizes motion sensors from earbuds to monitor the respiratory rate.

2) Axis Selection: One of the primary goals for the axis
selection method is to reduce the memory consumption
for the signal preprocessing and respiratory rate extraction
process. While both Zephyr [5] and SleepMonitor [12] run
their respiratory rate algorithm on a 6-axis motion sensors,
it will require significant memories for the whole process.
For example, 6-axis motion sensors will consume six times
more memory (≈72kb, when the sampling rate is 50Hz) than
one-axis. Therefore, in RRMonitor, we emphasized more on
selecting one axis than 6-axis. We experimented with both
best (select axis with the largest periodic variation [6], [7])
and fixed axis (any of the 6-axis) for axis selection.

3) Signal Preprocessing: Once we select the axis for
respiratory rate calculation, we first apply a median filter to
smooth the signals. Then, we perform z-score normalization
on the axis and apply a 5th order Butterworth bandpass with
0.3Hz center frequency [14]. We then apply a 3rd order
Savitzky-Golay [15] filter for further smoothing the signal.
The filtered signal Sf reduce the noise from the signal and
remove the gravity for extracting the respiratory rate.

4) Respiratory Rate Estimation Algorithm: We extract the
respiratory rate by following three approaches [6]:

i) FFT-Based Approach (RRfft): We first apply the
FFT on the filtered signal to compute the maximum
frequency component in the selected axis. We then
calculate the respiration rate by selecting the frequency
of highest amplitude (peak) within 0.13 Hz and 0.66 Hz
frequency range (corresponds to 7.8 and 40 BPM).

ii) Zero-Crossing Based Breathing Rate (RRzcr): Dur-
ing a breathing cycle, the breathing waveform changes
phases while transitioning from inhalation to exhalation
phase. Hence, we can easily calculate the breathing
rate by identifying the zero-crossing indices. The time
between two zero-crossing points generally corresponds
to the time it takes to complete a full-breathing cycle
(inhalation and exhalation). We take the median time of
the breathing cycle to estimate the respiratory rate.

iii) Peak Detection Based Breathing Rate (RRpeak): We
first find the peaks and troughs from the filtered signal.
Each trough-to-peak is considered as the inhalation,
and peak-to-trough can be considered as the exhalation.
Ideally, peaks and troughs must occur in alternating
order. To maintain the alternating order, we remove the
false peaks and troughs if there are multiple peaks in
between two troughs or multiple troughs in between two
peaks. We then estimate the respiratory rate by taking
the median peak-to-peak distances.

5) Post-Processing: We estimate the quality of our res-
piratory rate estimation algorithm by taking the standard
deviation of three estimations:

qw = σ(RRfft, RRzcr, RRpeak)

where qw denotes the quality of estimation for window
Ws. If the signal quality is good enough, the three algorithms
should estimate a similar respiratory rate. Therefore, the
standard deviation will be lower. On the other hand, if the
standard deviation is higher, that indicates that the signal is
likely to have motion artifacts. If qw is below the threshold
λ, we consider the estimation as valid.

As we are estimating the respiration rate instantaneously,
the system can have some large sudden change in the esti-
mation due to the motion artifacts. While the respiratory rate
can have small variations, the sudden change should not be
significantly larger than the previous estimation. Therefore,
the large sudden changes are likely to be an outlier. We
employ a Kalman-Filter based method to remove the outliers
by modifying an approach proposed in Zephyr [5]:

RRt = RRt−1 +Kt(RRt −RRt−1)

where Kt =
Pt−1

Pt−1+qw
is the Kalman Gain and Pt = (1−

Kt)Pt−1 is the estimation error at time t (P0 = 1). RRt is
the respiration rate at time t.

The novelty of our approach here is that we develop a
different quality metric qw for the Kalman gain calculation,
unlike the existing approach [5]. Our approach only depends
on single best channel which is more suitable for the
resource-constraint environment such as earbuds.

C. User-Interface

We developed an application for showing that displays the
respiration rate RRt in near real-time on a smartphone.

IV. EXPERIMENTATION

In this section, we present the findings of our experiments
to identify the optimal values for the key parameters de-
scribed in Section III. We performed the evaluations on a
dataset collected in a lab study with 30 participants. In the
next part of this section, we first discuss our study protocol
and then we present the results of our evaluation.

A. Study Protocol

We conducted a lab study with 30 participants (15 male
and 15 female, age range: 22-58) in a lab environment, where
we asked our participants to wear an earbud during the
data collection. Our participants performed several regular
and controlled breathing tasks in different postures (sitting,
standing, and lying down) during the study. The participants
performed the breathing task in a seating position for 1.5
minutes. The duration of the rest of the tasks was for
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one minute. Our study was conducted during COVID-19;
therefore, the participants wear a mask during the lab study
to ensure the safety of other participants and researchers. The
study was approved by Institutional Review Board (IRB).

The lab study took approximately 45 mins and facilitated
by two researchers using an android application. The re-
searchers used the android app on a Samsung phone to record
the timings of the tasks. We used a Samsung Galaxy Buds
Pro pair to record the measurements at a 50Hz sampling
rate from inertial measurement unit-based sensor units. A
Samsung Galaxy S9 was connected with the earbuds and
stored all the recordings in the local storage. The recordings
were later uploaded to the server.

We collected the ground truth respiratory rate from a
Zephyr bioharness chestband that is equipped with a breath-
ing sensor. We recorded the breathing signal at a 20Hz
sampling rate. We use a semi-automated algorithm to derive
the breathing rate from the breathing waveform. As breathing
waveforms are sinusoidal, we use a peak detection algorithm
to identify the peaks and troughs on the breathing waveform.
One researcher later manually reviewed the identified peaks
and troughs on a time-series-based annotation platform. If
the automated algorithm missed any peaks/troughs, the re-
searcher manually annotated the missing peaks and troughs.
The reference breathing rate is calculated by taking the times-
tamp difference two consecutive peaks: 60/(tsi+1

p − tsip),
where tsip denotes the timestamp of ith peak. We needed to
discard some reference data for each task due to the low-
quality breathing waveforms captured in the chestband.

B. Parameters of Breathing Module

While the algorithms performed better in Python, we
report the results from the version implemented in Java.
Since the filtering algorithms are slightly different in Java,
We choose to use Java to make the results consistent with
the on-device performance. We used the same code on the
Android application; therefore, the result presented in this
section is likely to be consistent with the application.

1) Sampling Rate (fs): We could select one sample rate
for our lab study; hence, we conducted an initial experiment
by recording the data at 80Hz. From our initial exploration,
we found that recording at 50Hz does not significantly impact
the mean absolute error (MAE), while it can reduce the
memory overhead by 37.5%. Therefore, we select 50 Hz as
our sampling rate for recording.

2) Best Algorithm for Respiratory Rate Estimation (RRt):
Table II summarizes the results of different respiratory rate
algorithm. As can be seen in Table II, the ZCR algorithm
performs the best across all postures (MAE=3.12, Ws=30s)
than the FFT-Based Algorithm (MAE= 3.24, Ws=30s). In
addition to the performance, the zero-crossing algorithm is
extremely lightweight (processing time 0.02ms) than the FFT
(1.96ms) and Peak-based (10.28ms) Algorithm (Figure 2).
Therefore, we select RRzcr as our main respiratory rate
(RRt) to show it to the user.

3) Window Size Selection (Ws): Previous works [5], [12]
have shown that a 30-sec window works best for the respira-
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Fig. 2: Processing Time Comparison

tory rate algorithm. Since our focus is to save resources for
continuous monitoring, we experimented with four different
window sizes. As expected, when we decrease the window
size, it slightly increases the MAE. For example, if we take
a 24-sec window (MAE=3.17) instead of a 30-sec window,
the error is raised by ≈ 3.5%. Although the processing time
does not improve significantly (8.8%), it can save around 14
kb memory for storing the 6-axis accelerometer. Therefore,
we select a 24 second data buffer for RRMonitor.

4) Step Size Selection (Ss): While small step sizes can
provide instantaneous results, it can take more CPU usages.
Table II shows the results of one second step size. As can
be seen in Table II, RRMonitor takes 2-3% CPU load for
each one sec interval. While a larger step size could provide
a more robust result, a smaller window length is essential
for generating the breathing waveform in the app.

5) Channel Selection: As can be seen in Figure 2, the
best axis selection algorithm takes a significant amount
of processing times (11.31ms). We need to run an FFT
algorithm for the 6-axis motion sensors during the best axis
selection procedure. Therefore, it takes six times more mem-
ory than a fixed axis algorithm. To reduce the computational
complexity, we separately ran our algorithm on each of the
six axes and evaluated their performance.
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Fig. 3: Error Comparison for Best or Fixed Channel Selection

The performance comparison is depicted in Figure 3. Sur-
prisingly, we found that Accx (MAE=2.05) and Accz (MAE=
2.10) performs better than the most periodic channel(MAE=
2.61). Unlike previous works [7], the fixed channel-based
approach makes more sense to earbuds because earbuds
are fixed to the ear, and the Accx is the horizontal axis.
Therefore, breathing motion affects have higher variation on
Accx axis. We also analyzed the channels picked by the
best channel-based algorithm and found that Accx channel
is selected as the axis with most periodic variations in
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Ws
MAE-Sitting (P=22) MAE-Standing(P=29) MAE-Lying (P=26) Processing

Time (Avg)N RRfft RRzcr RRpeak N RRfft RRzcr RRpeak N RRfft RRzcr RRpeak

30 secs 530 2.58 2.33 3.55 356 3.76 3.65 4.80 388 3.39 3.53 4.24 37ms
24 secs 604 2.75 2.61 3.17 463 3.70 3.57 4.37 468 3.51 3.52 3.92 34ms
18 secs 710 2.92 2.90 3.11 552 3.94 3.72 4.02 614 3.56 3.70 3.62 27ms
12 secs 674 3.40 3.26 3.31 537 3.90 3.78 3.66 649 3.94 3.92 3.89 22ms

TABLE II: Performance of different respiration rate algorithm under different postures and window size. The result was
generated by running the best axis selection procedure. For this set of results, M=50% and λ = 3. (MAE: Mean Absolute
Error, N: Number of valid windows, P: Number of participants with valid ground truth data).

most cases. Therefore, selecting the Accx can reduce some
computational and memory overhead while improving the
accuracy. Therefore, we selected only Accx for RRMonitor.

6) Motion Artifact Removal: The head motion filtering is
also a very crucial process of RRMonitor. As earbuds are
fixed to the head, a slight head motion can often generate
an erroneous result. However, we discard the windows if
more than M% samples are higher than 10 m/s2. Table III
summarizes the performance of head motion filtering. As
can be seen in Table III, M=25% gives the best performance
while removing one-third of the windows.

M% MAE (RRZCR) (%) Windows Removed

5% 1.74 34.3%
10% 1.74 34.3%
25% 1.64 23.2%
50% 2.04 14.1%

TABLE III: Impact on performance with motion filtering

7) Kalman-Filter Based Postprocessing: Our Kalman-
Filter-based post-processing algorithm is one of the key
contributions of this paper. As we estimate three breathing
rates, the prediction itself can be used as a quality control
mechanism. Without the Kalman filter, the accuracy can drop
by 18% (from 1.64 to 1.92 BPM). We also have parameter
λ that is used to filter out erroneous predictions. When λ is
high, it will filter fewer erroneous results and can impact the
accuracy. For example, changing the λ from 3 to 5 drops the
accuracy by 23.2% (MAE : 1.64→ 2.02).

V. DISCUSSIONS AND CONCLUSIONS

This paper presents an end-to-end system for respiratory
rate monitoring that can run continuously on a mobile
device. We envisioned that the user would interact with
the application and visualize their breathing waveform in
near real-time. Therefore, the critical contribution of this
paper is that our system is resource-aware, and we adjusted
several key parameters to keep the system lightweight so
that the system does not put a significant burden on the
existing system. Our analysis shows that our system only
takes 2-3% overhead. The overhead can be further reduced
by monitoring the breathing rate less frequently and when
the user is not interacting with the application.

Respiration rate is a critical vital sign with several health
benefits. Our system is the intermediary step for deploying
a real-time respiratory algorithm in the wild. As a next step,
we plan to evaluate the system with test users and compare

the performance. While the current system is limited to
estimating the respiration rate at resting conditions, we also
plan to expand our approach to respiratory rate estimation
while the users perform various activities.
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