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Abstract— Spatial neglect (SN) is a neurological disorder
that causes inattention to visual stimuli in the contralesional
visual field, stemming from unilateral brain injury such as
stroke. The current gold standard method of SN assessment,
the conventional Behavioral Inattention Test (BIT-C), is highly
variable and inconsistent in its results. In our previous work, we
built an augmented reality (AR)-based BCI to overcome the lim-
itations of the BIT-C and classified between neglected and non-
neglected targets with high accuracy. Our previous approach
included personalization of the neglect detection classifier but
the process required rigorous retraining from scratch and time-
consuming feature selection for each participant. Future steps
of our work will require rapid personalization of the neglect
classifier; therefore, in this paper, we investigate fine-tuning of
a neural network model to hasten the personalization process.

Clinical relevance— The proposed approach will utilize EEG
data from multiple individuals, and enable rapid adaptation
of the neglect classifier to each specific participant’s EEG
that could be collected over multiple days. Further research
will investigate important EEG channels and it will provide a
robust modality for online EEG-guided neglect detection and
rehabilitation.

I. INTRODUCTION AND RELATED WORK

Visual spatial neglect (SN) is a stroke-related condition
afflicting 20-43% of stroke patients [1]. Prevalence of left-
sided neglect due to a right hemisphere stroke is more than
twice than that of right-sided neglect due to a left hemisphere
stroke [2]. Left-sided neglect is usually more severe as well
due to to the allocation of attentional processes to the right
hemisphere [3]. The condition manifests as inattention to
visual stimuli appearing contralesionally, such as missing
food on one side of the plate, brushing only one side of
the head, or bumping into objects on the contralesional side.
There exists no common therapy for addressing SN and
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rehabilitation of attentional deficits is complicated by the
difficulty in identifying and assessing SN.

One of the most common form of SN assessments are
pencil-and-paper test. The conventional Behavioral Inatten-
tion Tests (BIT-C) is classically comprised of 6 subtests: line
crossing, line bisection, letter cancellation, star cancellation,
figure and shape copying, and representational drawing [4].
These tests require the assessor to score each subtest and
sum the scores. If more than one subtest scores below a
cutoff or if the total sum scores below the overall cutoff,
the patient has SN. There are several issues with this kind of
assessment. First, the result is a binary decision that provides
scaling for the severity of neglect. Second, although this test
requires that the papers are centered with the patient’s body,
the patient could change their field of view by simply moving
their head, a common compensatory strategy of patients
with SN. Lastly, less than half of patients with mild or
moderate cases of SN may spontaneously recover partially
in the acute phase (2 weeks post-stroke) [5]. It is unclear
how sensitive the BIT-C overall is to these rapid changes
in the patient’s condition. Previous studies have found that
just the line bisection subtest performance correlates with the
severity of SN seen in clinically-observed behaviors [6], [7].
More reliable methods of measuring and assessing SN are
important for providing timely intervention, and therefore,
improving rehabilitation outcomes.

In order to overcome the shortcomings of the existing ne-
glect detection methods, we designed an Augmented reality
based and electroencephalography (EEG) guided neglect de-
tection and rehabilitation system called AREEN [8]. AREEN
uses EEG as the imaging modality of neural signals during
a Starry Night Test [9]. The Starry Night Test in AREEN
is adapted for augmented reality (AR) [8] (See Figure 1 for
the AREEN system) . We already recruited stroke patients
and collected EEG data, and performed Phase I analyses of
the AREEN system. Phase I analyses investigated power in
different frequency bands for SN detection across participant
groups and temporal features for detection of potentially
neglected targets. We showed that the AREEN system was
both generalizable and personalizable in an across-participant
setting [8]. However, personalization step included a rigorous
retraining and exhaustive search for feature selection for
each participant. This personalization step is computationally
complex and time-consuming. Phase II of our work will
include an EEG-guided neglect rehabilitation over multiple
days, and each day will include a calibration session to
refine the EEG-based neglected target classifier for each
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participant. Therefore, computationally complex and time-
consuming classifier personalization methods cannot be used
in Phase II. Methods that rely on fine-tuning rather than
retrain entire classifiers from scratch will be more suitable
for the AREEN system in a rehabilitation setting.

In this paper, we investigate fine-tuning for a popular
convolutional neural network based model called EEGNet
[10] for neglected versus non-neglected target classification.
This work will build on our previous study that also utilized
EEGNet for neglect detection among stroke patients[11].
This investigation will provide a foundation for upcoming
phases in our study and the short fine-tuning times will make
the AREEN system viable for domain adaptation for online
EEG-guided rehabilitation, which will require rapid classifier
design, and highly accurate neglected target detection.

II. DATASETS

A. Data Collection

In this paper, we use the same data utilized in Phase I anal-
yses of our study to design a fine-tuning and personalization
method for the detection of neglected targets [8]. Specifically,
we utilize a combination of two EEG datasets in this paper
to provide preliminary results towards the above mentioned
methods for fine-tuning the classifier design: One dataset is
collected using our AREEN system and the other one is
collected using the same paradigm as the AREEN system
but the presentation was on a computer screen rather than
through an AR headset. We denote this system as computer-
based BCI (CBBCI). Both datasets are collected through
research procedures that were approved by local Institutional
Review Board (IRB) under the University of Pittsburgh IRB
numbers PRO15020115 and STUDY19060390.

Data is collected using a Starry Night Test through the
AREEN system: canvas is divided into 6×12 grids. The
entirety of the AR canvas is of size 0.564m · 0.288m and
the depth is 1.14m. A red star, or a target, randomly appears
every 1.2s to 2.5s. A random number of green stars (between
30 and 35), or distractors, (Figure 1) appears for 0.05s
to 0.25s. Targets are shown 216 times total, 3 times in
each cell. These stay on the canvas for a maximum of 3s
during the clicker-based assessment and FOV (field of view)
test, and 0.066s in EEG-based assessment. EEG data, with
AREEN system, are collected through 16 electrodes located
at Fp1, Fp2, F3, F4, Fz, Fc1, Fc2, Cz, P1, P2, C1, C2, Cp3,
Cp4, O1 and O2 according to 10-20 system with sampling
frequency of 256Hz. Each experimental session consists of
a (1) Signal Check to inspect signal quality, (2) FOV Test
to ensure proper mounting and positioning of the HoloLens,
(3) Clicker-Based Assessment to gather the groundtruth for
each position, and (4) EEG-Based Assessment for EEG data
acquisition.

The CBBCI system we developed for neglect detection
also utilizes the Starry Night Test paradigm [12]. For time-
response data, participants clicked a button on a keyboard
for the ground-truth and EEG data was collected using the
current method. There are 192 trials instead of 216 presented
in our novel AREEN system. It covers the same visual field

Fig. 1. Overview of the AREEN detection, assessment and rehabilitation
system. A Starry Night scheme (green and red dots will appear and disappear
at random times in random locations of the visual field in order to assess
the region and extent of visual neglect) is presented to the patient while
the patient’s EEG signal is recorded. When visual neglect is detected using
EEG-driven features, the multimodal feedback is triggered for rehabilitation
treatment.

TABLE I
PARTICIPANT CHARACTERISTICS

ID Age Sex Stroke
Hemisphere

Days
Since
Stroke

BIT
Total

BIT subtests
below cutoff

(/6)

SN01 76 M Right 115 44 6
SN02 51 M Right 9 25 5
SN04 72 F Right - 130 2
SN05 57 F Left 7 134 2
SN101 81 F Right 701 107 3
WSN01 68 F Right 17 139 1
WSN101 35 M Left 2404 138 0
WSN102 57 F Left 2466 145 0
WSN103 80 M Right 823 142 0
WSN104 27 M Left 483 146 0

as our AREEN system but the last two channels differ. Thus,
in our analyses, we use 14 channels of EEG data which
are the same with AREEN except for O1 and O2 channels.
In both systems, stimuli corresponding to each target are
marked with trigger values that correspond to 700ms long
EEG. As the sampling frequency in both systems is 256Hz,
this corresponds to 180 datapoints for each target.

B. Participants

Above mentioned two datasets include EEG data from
a total of 10 participants: 5 stroke patients with SN and
5 stroke patients without SN. The initial evaluation of the
existence of SN is done with the BIT-C. A diagnosis of
neglect was established by either a total BIT score lower
than the established cutoff (<129), or a score lower than
the cutoff score on more than one subtest. Participants are
named with respect to their diagnosis from the BIT-C. If a
participant has SN, they are denoted as SN. Otherwise, they
are denoted as WSN. More specifically, we recruited 1 SN
participant 4 WSN participants to use our AREEN system in
Phase I for neglect detection and assessment. The remaining
5 participants (4 SN and 1 WSN) used the CBBCI system
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during EEG data collection. Patients with recent seizures
were excluded from this study. The details of the participants
are provided in Table I. Note that the numeral codes denote
whether a participant used CBBCI or AREEN: those which
start with one (also shown in bold) used the AREEN system
and those starting with 0 used CBBCI.

III. METHODOLOGY

Time-domain EEG data is preprocessed and fed through
the neural network model for classifying slow- versus fast-
response targets (representing potentially neglected and non-
neglected targets, respectively). As mentioned in Section I,
considering the variability of EEG signals across different
individuals, we develop an EEG-based personalized neglect
detector. In order to overcome the inability to train an
independent individual detection model from scratch due to
insufficient individual data, and to minimize individual model
training time, we have trained the same model multiple times
from scratch by leaving a participant’s data out and getting
metrics from that specific data before and after fine-tuning.

A. Preprocessing

After collecting ground-truth time-response data corre-
sponding to each target, target locations corresponding to
slow-response and fast-response targets are identified. Slow-
response targets correspond to potentially neglected targets
whereas fast-response targets correspond to potentially ob-
served targets. In order to achieve this separation, Otsu’s
method [13] is used to create a time-threshold for every
patient: if a target’s corresponding response time is greater
than the threshold, the target is considered as a slow-response
target; if it is smaller than the threshold, then it is considered
as a fast-response target. To suppress outlier activity, we first
get the median of the three time-response data in each cell,
as each cell represents part of a visual field of a participant,
and get the threshold value from resulting group of median
values. After calculating the threshold, each time-point is
then compared with the threshold value for initial labeling.
To further suppress outlier activity, we follow a majority-
voting procedure for the targets in their respective cells. This
procedure provides information about potentially perceived
or potentially neglected locations on the visual field and it
is used as ground-truth to label EEG data. EEG data are
first put through an 8th order Butterworth filter with corner
frequencies of 2Hz and 60Hz, and then through a 4th order
notch filter with corner frequencies of 58Hz and 62Hz.

After filtering, EEG data that are 700ms long and time-
locked to the presented targets are extracted from each
participant’s recorded EEG data, for a total of 216 EEG
segments. As EEG is very person-specific and we are aiming
at a classification across individuals, the 200ms before a
target is presented is used for baseline correction. Baseline
correction is done in the time domain such that the mean of
amplitude values of the baseline segment is calculated and
the actual segment is corrected.

TABLE II
NEURAL NETWORK ARCHITECTURE, BASED ON EEGNET

Layer # Layers Size Info # Params
conv2d 8 (30, 1) 256

batchnorm - - 32
depthwise conv2d 16 (1, 16) 224

batchnorm - - 64
activation, avgpool - (4, 1) ELU -

dropout - - p = 0.5 -
separable conv2d 16 (1, 16) 512

batchnorm - - 64
activation, avgpool - (8, 1) ELU -

dropout - - p = 0.5 -
flatten - - 162

dense, activation 1 2 softmax -
Total 1.314

B. Classification Algorithm

We have utilized a convolutional neural network-based
classifier called EEGNet[10]. EEGNet has been demon-
strated to classify multi-channel EEG data with high metrics.
The model has back-to-back convolutional layers to learn
spatial and temporal features. To meet our data’s needs,
we have modified the hyperparameters; thus, our model’s
structure is explained below.

The model begins with a (30, 1) 2D convolutional layer,
which can be seen as a temporal filter. It is followed by
a depthwise convolutional layer [14] of size (1, 16), which
is a spatial filter. A batch normalization layer is then used
along the resulting spatiotemporal features. To introduce non-
linearity, we use an exponential linear unit (ELU) and to
reduce computational complexity, we use an average pooling
layer of size (4, 1). For more generalizability, we also use a
dropout layer with a rate of 0.25.

These layers are continued with a separable convolution
layer [14] of size (1, 16) to further reduce the number
of parameters and to combine the extracted spatiotemporal
features. Finally, the output is put through another average
pooling layer of size (8, 1) and flattened. The flattened input
goes through a dense layer with 2 for classification using
softmax.

A brief description of the model can be seen in Table II. As
the input shape in our modality is (14, 180), 180 timepoints
from 14 channels, the number of parameters with respect to
that is correlated with the input shape.

For each participant, the general model is trained from
scratch on the rest of participants’ data. During this training
stage, we adopt an Adam optimizer with a learning rate of
1e − 4 for 500 epochs. The next fine-tuning stage sets the
same learning rate but for 100 epochs. The model is written
in Tensorflow[15] on Python and all the models are trained
with CPU.

IV. RESULTS

The experimental results with our proposed methodology
are given in Table III.

Results show that fine-tuning the model to a participant’s
data improves the accuracy of detecting slow-response targets
in a very short amount of time with a small amount of data.
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TABLE III
EXPERIMENTAL RESULTS

Participant Accuracy before
Fine-tuning (%)

Accuracy after
Fine-tuning (%)

Fine-tuning
time (sec)

SN01 64.33% 82.3% 92.3
SN02 18.7% 81.6% 128.6
SN04 43.2% 65.4% 94.5
SN05 41.4% 75.8% 96.8
SN101 52.8% 76.8% 59.8
WSN01 23.8% 86.7% 94.7
WSN101 39.3% 97.2% 52.5
WSN102 15.9% 90.2% 56.5
WSN103 9.6% 91.8% 54.3
WSN104 6.5% 98.6% 55.8

This can be seen as domain adaptation, as EEG is very
person-specific and we are adapting the general EEG model
to each participant’s EEG. This is also viable in Phase II as in
each session, data will be collected before the rehabilitation
sessions. The rapid computation time of fine-tuning shows
that fine-tuning before each rehabilitation session is feasible.

The low metrics before fine-tuning shows the shortcom-
ings of our project for the time being as Phase I is still on-
going. Deep learning methods usually need large amounts of
data and our current dataset is comprised of ten participants.
Thus, fine-tuning is crucial for both domain adaptation and
addressing the dataset shortcomings.

V. CONCLUSION

In this paper, we provide a modified version of a deep
learning model called EEGNet and conduct a slow-response
versus fast-response classification for spatial neglect assess-
ment. For online rehabilitation, as a preliminary step, we
also fine-tune the model for each participant in order to
address person-specificness of EEG with small amount of
data. The experimental results show that with fine-tuning, the
model adapts to each specific participant with high detection
performance metrics.

Future investigations will use the novel AREEN BCI setup
to progress on the rehabilitation procedures. For a better
classification, we will provide a four-class classification for
slow-response and fast-response targets from both partici-
pants with and without SN. Accordingly, our novel BCI and
the classifier could improve the assessment of SN and it
may result in a more versatile assessment of spatial neglect
in stroke patients compared to the BIT-C.
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