
  

  

Abstract—Error-related potential (ErrP) usually emerges in 
the brain when human perceives errors and is believed to be a 
promising signal for optimizing brain-computer interface (BCI) 
system. However, most of the ErrP studies only focus on how to 
distinguish the correct and wrong conditions, which is not 
enough for the BCI application in real scenarios. Therefore, it is 
necessary to study the ErrPs induced by the prediction deviants 
with varying degrees, concurrently test the separability of such 
EEG features. To this end, electroencephalogram (EEG) data of 
twelve healthy subjects were recorded when they participated in 
a direction prediction experiment. There are three prediction 
-deviant conditions in it, i.e., correct prediction, 90°deviant, 180° 
deviant. Event-related potential and inter-trial coherence were 
analyzed. Consequently, the error-related negativity (ERN) and 
N450 component in FCZ were significantly modulated by the 
degrees of prediction deviants, especially in the low-frequency 
band (<13Hz). Moreover, single-trial classification was adopted 
to test the separability of these features; the averaged accuracies 
between any two conditions were 87.75%, 85.25%, 64.79%. This 
study demonstrates the prediction deviants with varying degrees 
can induce separable ErrP features, which provide a deeper 
understanding of the ErrP signatures for developing BCIs.   

Keywords—Error-related Potential (ErrP); Brain-computer 
interface(BCI); Varying Degrees; Discriminative Canonical 
Pattern Matching (DCPM); Prediction Deviants. 

I. INTRODUCTION 

Brain-computer interface (BCI) is a rising technology, 
which can detect and translate the activities of the central 
nervous system into computer instructions [1, 2]. Currently, 
P300 [3], steady-state visual evoked potential (SSVEP) [4, 5], 
event-related desynchronization (ERD) [6] are the most used 
electroencephalogram (EEG) signals for BCIs. However, 
these signals are far from enough for naturally expressing the 
brain’s intentions. More EEG signals, especially those 
triggered by top-down cognitive processes, remain 
investigated for developing and optimizing BCIs. 

Error-related potential (ErrP) is an endogenous EEG signal 
emerging when the brain perceives errors [7, 8]. It is made up 
of error-related negativity (ERN) [9], error positivity (Pe) 
[10], and some other subcomponents, such as N200, N450, 
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etc. [7]. ErrP can be theoretically explained by the predictive 
coding, which proposes the brain is essentially a prediction 
machine, and human perceptions are shaped by learning from 
the deviants between predictions and sensory inputs [11, 12]. 
Other than the signals evoked solely by external stimuli, ErrP 
is triggered by prediction deviants, reflecting the voluntary 
mental activity of the brain[8]. Thus, ErrP is a promising EEG 
signal for developing BCIs. It is necessary to have a deeper 
understanding of ErrP to make better use of it. 

Up to now, a typical ErrP application in the BCI system is 
to work as an automatic error correction signal, improving 
both the reliability and speed of P300/SSVEP-based BCI 
spellers [13, 14]. Recent studies further highlight the crucial 
role of ErrP in developing neuroadaptive technology, i.e., 
training the computer to learn from errors, enabling it to adapt 
to an estimate of its operator’s mindset automatically [9, 15]. 
The neuroadaptive technology places greater demands on the 
understandings of ErrP; thus, more detailed ErrP studies are 
conducted, such as categorizing different kinds of errors [16], 
combining ErrPs with asynchronous BCIs [17], etc. However, 
most of the studies only distinguish the ErrPs in entirely 
correct and wrong conditions. It remains unknown what 
signatures would be when the prediction deviants induce 
ErrPs with varying degrees; it also remains unknown whether 
these EEG features are separable or not.   

This study intends to investigate ErrP signatures induced 
by prediction deviants with varying degrees and probe into 
the separability of these EEG features. For this, a direction 
prediction experiment was conducted, which contained three 
prediction-deviant conditions, i.e., correct, 90°deviant, 
180°deviant. Consequently, ERN and N450 in FCZ were 
significantly modulated by the deviant degrees, especially in 
the low-frequency band (<13Hz). The discriminative 
canonical pattern matching algorithm was adopted for 
classification; the average accuracies between any two 
conditions were 87.75%, 85.25%, 64.79%, respectively. The 
results illustrate the prediction deviants with varying degrees 
can induce separable ErrP features for BCI use.   

II. MATERIALS AND METHODS 

A. Participants 
 Twelve healthy subjects(5 males; 20.8±0.69 years old), 
who were without psychological or neurological diseases and 
had normal or corrected to normal vision, participated in this 
study. The Institutional Review Board at Tianjin University 
approved experimental procedures involving human subjects. 
The written informed consent was obtained from all the 
subjects. 
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B. Experiments 

 
Figure 1. Illustration of experimental design. (a) possible moving directions 
of the stimulation, which emerged with equal possibility. (b) experimental 
procedures of a single trail. (c) an example of prediction deviants with 
varying degrees. 

 In the direction prediction experiment, the red dot had four 
possible directions. As figure 1(a) showed, the moving 
direction with the highest possibility was illustrated by an 
arrow.  The procedures of a single trial were shown in figure 
1(b). Specifically, the trial started with a 16×16 grid, a red 
dot located at a random grid point; 500ms later, a white arrow 
appeared, indicating the most likely moving direction; after 
the arrow disappeared, the dot moved to the next grid point, 
which could lead to three prediction-deviant conditions, i.e., 
correct prediction, 90° deviant, 180° deviant. A single trial 
sustained about 1400ms, there were 140 trials in a block. The 
whole experiment contained 4 blocks. Subjects could rest as 
long as they want between blocks.  

 Figure 1(c) is an example showing how to form prediction 
deviants with varying degrees. To be specific, the predicted 
direction is formed according to the arrow’s indication. Such 
prediction was reinforced by the large proportion (80%) of 
correctness, in which the dot did move in the direction the 
arrow indicated. However, in 14 trials (10%) of each block, 
the dot moved to deviate 90° (clockwise or counterclockwise) 
away from the predicted direction, i.e., 90° deviant condition. 
In another 14 trials (10%) of each block, the dot moved in a 
completely opposite direction comparing to the predicted one, 
i.e., 180° deviant condition. In this way, three prediction 
-deviant conditions were built up. There were totally 56 trials 
with 90° deviant, 56 trials with 180° deviant, and 448 trials 
with correct prediction. This study randomly selected 56 trials 
for the 448 correct trials for further data analysis.  

C. Data Recording and pre-processing 
 The SynAmps2 and Quik-Cap with a 1000Hz sampling 
rate recorded the EEG signals, hardware-filtered in range of 
0~200Hz, and a 50Hz trap filter was applied to the raw data, 
aiming to remove the power line interference. 64 electrodes 
were placed on the scalp following the international 10-20 
system. The prefrontal lobe and the central electrode were 
selected as the ground and reference, respectively. Eye-blinks 
were monitored by signals recorded at FP1 and FP2.  
 Further, EEG analyzes data were conducted by MATLAB 
R2017b (MathWorks, MA, USA) with toolbox EEGLAB, 
and statistical analyzes were carried out on IBM SPSS 
Statistics 24 (IBM Company, NY, USA). The acquired data 
were filtered in a range of 0.1~45Hz and resampled to 200Hz. 
As to data extraction, in each trial, the data in the period of 
-500ms to 1400ms relative to the target onset was extracted 
for subsequent analyzes. Moreover, the baseline was 
corrected using the averaged value calculated from the data 
200ms before the target moment. 

D. Data Processing and Analysis 
 The event-related potential (ERP) in FCZ and PZ 
electrodes were first analyzed to have a general observation 
of the ErrP signatures. According to the waveform, three 
typical components, i.e., ERN, Pe, and N450, were selected, 
and the corresponding temporal windows were showed in 
table1. The amplitudes of each component were calculated as 
the mean within the specified time window.   
Table 1. Selection of time windows and amplitudes of components 

Component Time window(ms) 
ERN 
Pe 

180~230 
270~320 

N450 380~430 

 Then, we analyzed the time-frequency distribution of 
inter-trial coherence (ITC). The short- time Fourier transform 
(STFT) should be first calculated as equation (1), in which h(t) 
is the window function. 

    (1) 
Inter-trial coherence (ITC), which measures phase coherence 
among trials, was calculated as equation (2). Its value is 
between 0 and 1; a higher value indicates stronger 
coherence of the phase in each trial. 

           (2) 
 As to classification, the discriminative canonical pattern 
matching (DCPM) algorithm [18] was used. It contains three 
major parts: construction of discriminative spatial patterns, 
construction of CCA patterns, and pattern matching. EEG 
data of 24 electrodes (FC3, FC1, FCZ, FC2, FC4, C3, C1, CZ, 
C2, C4, CP5, CP3, CP1, CPZ, CP2, CP4, CP6, P5, P3, P1, PZ, 
P2, P4, P6) between 160~630ms of every single trial were 
selected for classification. For each subject, 44 trials and 10 
trials were randomly selected as the training set and testing 
set under three events, respectively. All the classification 
accuracies were computed with a 10-fold cross-validation 
procedure. 

6672



  

III. RESULTS  

A. Event-related potential (ERP) analyzes 

 
Figure 2. The ErrPs induced by prediction deviants with varying degrees in (a) 
FCZ, and (b) PZ electrodes.  

 
Figure 3. Topographical distribution of the ERN, Pe, and N450 components 
in correct, 90°deviant，180°deviant conditions. 

As figure 2 showed, the ErrPs induced by this direction 
prediction experiment contained three typical subcomponents, 
i.e., ERN, Pe and N450. Comparing to the waveforms in PZ, 
these components are more evident in the FZ electrode. These 
observations were consistent with previous studies, which 
reported that ERN is a negative deflection peaking frontal- 
centrally about 100ms after an error occurs [9]; Pe is a 
positive wave following ERN and often peaks in central 
-parietal areas [10]; while other error-related subcomponents, 
such as N450 often located in the parietal-occipital area [7]. 
The topographical distributions of the three components were 
shown in figure 3.  These observations not only confirmed the 
reliability of this study, but also highlighted the typical 
subcomponents of ErrP, which could be further analyzed.  

Based on the above analyzes, one-way repeated analysis of 
variance (ANOVA) of ERN, Pe, and N450 amplitude were 
calculated, and Bonferroni correction was applied when 
necessary. As shown in figure3(a), in FCZ electrode, ERN 
(F(2,22)=9.378, P= 0.005), Pe (F(2,22)=7.431, P=0.011) and  
N450 (F(2,22) = 10.000, P<0.001) all revealed significant 
differences among conditions. In particular, there were 
statistical significances between 90° and 180° deviant 
conditions in ERN (P=0.05) and N450 (P=0.001) amplitude, 
and the larger the prediction deviant was, the more negative 
the waveform was. 

As to the amplitude of three components in PZ electrode, 
no statistical significance was found in ERN(F(2,22)=0.251, 
P= 0.780), Pe (F(2,22)=2.143, P= 0.141) or N450 (F(2,22)= 
0.882, P= 0.428).   

The ERP analyzes demonstrated that the varying degrees of 
prediction deviants (90° vs. 180°) can modulate the signatures 
of ErrP, especially the ERN and N450 subcomponents. This 
result provides new neural evidence supporting a neuronal 
model of predictive coding accounting for the mismatch 
negativity, assuming a close association between the degree 
of prediction deviant and ErrP amplitude [19]. 

 
Figure 4. (a) amplitudes analyze in FCZ electrode. (b) amplitudes analyze in 
PZ electrode. Statistical significance: *0.01<p<0.05, **0.001<p<0.01, ***: 
p<0.001. 

B. Inter-trial coherence (ITC) analyzes  
To further probe into the ErrP signatures. This study further 

analyzed the time-frequency distribution of the ITC. Figure 
5(a) showed the time-frequency areas, where there was 
statistical significance among the three prediction deviant 
conditions (red areas represent P<0.005, while the P-value in 
white areas was larger than 0.05). Combining such P-value 
distribution with the ERP analyzes, we calculated the ITC 
value in the time window of ERN, Pe, and N450. Specifically, 
in delta beta, the ITCs with deviant were much larger than 
those of correct condition in Pe (F(2,22)=13.172, P<0.001) 
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and N450 period (F(2,22)=13.101, P<0.001). Similar results 
were obtained in the theta band. As to the ITCs in the alpha 
band, the statistical significance mainly appeared in ERN 
(F(2,22)= 12.752, P<0.001) and Pe (F(2,22)=42.076, 
P<0.001) time window. Therefore, the ITC differences 
induced by the prediction deviants are mainly located in the 
low-frequency band. 

 
Figure 5. (a) FCZ time-frequency distribution of statistical significance (P < 
0.005). (b) FCZ ITC analyzes in ERN, Pe, N450 period and 7~13Hz 
frequency band. (c) PZ time-frequency distribution of statistical 
significance(P = 0.005). (d) PZ ITC analyzes in ERN, Pe, N450 period and 
7~13Hz frequency band. *presented 0.01<p<0.05, **presented 
0.001<p<0.01, ***presented p<0.001. 

C. Classification results 
Table 2. the accuracy rate of classifying the three kinds of 
events in pairs. 

Subject 0-180 0-90 90-180 
1 90.50% 90.50% 72.00% 
2 78.00% 76.50% 65.00% 
3 81.50% 78.50% 54.50% 
4 92.50% 92.50% 68.00% 
5 79.50% 72.50% 68.50% 
6 94.50% 83.50% 64.50% 
7 83.50% 89.50% 63.50% 
8 91.00% 94.50% 60.50% 
9 87.50% 92.50% 56.00% 
10 95.00% 83.00% 73.00% 
11 89.00% 82.50% 67.50% 
12 90.50% 87.00% 64.50% 

mean 87.75% 85.25% 64.79% 

To test the separability of the ErrPs induced by prediction 
deviants, the DCPM was used for classification. As shown in 
Table2,  the averaged accuracy rate between Correct-90°
deviant, Correctness-180°, 90°-180°deviant was 87.75%, 
85.25%, 64.79%, respectively, confirming the separability.  

Ⅳ CONCLUSION 

   This study probed into the EEG signatures induced by 
prediction deviants with varying degrees. By analyzing the 

ERP and ITC, we found the signatures of ERN and N450 
could be modulated significantly by the degrees of prediction 
deviants, and such difference mainly resulted from the ITC 
changes in the low-frequency band (<13Hz). Moreover, by 
the assistant of the DCPM, the separability of the EEG 
features induced by varying degree deviants was confirmed. 
The results can provide new neural evidence for better 
understanding the ErrP signatures, and contribute to making 
better use of ErrP for developing BCIs. 
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