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Abstract— Techniques for 3D endoscopic systems have been
widely studied for various reasons. Among them, active stereo
based systems, in which structured-light patterns are projected
to surfaces and endoscopic images of the pattern are analyzed
to produce 3D depth images, are promising, because of ro-
bustness and simple system configurations. For those systems,
finding correspondences between a projected pattern and an
original pattern is an open problem. Recently, correspondence
estimation by graph neural networks (GCN) using graph-based
representation of the patterns were proposed for 3D endoscopic
systems. One severe problem of the approach is that the graph
matching by GCN is largely affected by the stability of the
graph construction process using the detected patterns of a
captured image. If the detected pattern is fragmented into
small pieces, graph matching may fail and 3D shapes cannot
be retrieved. In this paper, we propose a solution for those
problems by applying deep-layered GCN and extended graph
representations of the patterns, where proximity information
is added. Experiments show that the proposed method outper-
formed the previous method in accuracies for correspondence
matching for 3D reconstruction.

I. INTRODUCTION

3D reconstruction for endoscopic systems has been at-
tracting many researchers. Among them, active-stereo-based
techniques have been considered promising for practical
usage [1]–[4], because they are easily built by just adding
a static pattern projector to existing systems and textureless
regions can be densely reconstructed.

Recently, Furukawa et al. developed a 3D endoscopic
system, in which a micro-sized pattern projector with optical
fiber is inserted through an instrument channel of a common
monocular endoscope to recover 3D depth images. They pro-
posed a method to robustly obtain correspondences between
the detected pattern and the original pattern by representing
the pattern by graphs and applying a graph convolutional
network (GCN) [1]. By using a GCN, they achieved frame-
wise 3D reconstruction even without a pre-calibration of the
system, such as projector’s position and orientation from the
camera.

One severe problem of the approach is that the graph
matching by GCN is largely affected by the stability of
the graph construction process using the detected patterns
of a captured image. If the detected pattern is fragmented
into small pieces, graph matching may fail and 3D shapes
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cannot be retrieved. Since endoscopic images of internal
organs usually include severe disturbances, such as occluding
boundaries, specular noises or subsurface scattering, the
projected pattern includes many unclear pattern features as
well as unexpected discontinuities, which causes unstable
pattern detection.

In this paper, we propose a solution for those problems
by extending the GCN and the graph for the input. In the
proposed method, the pattern is represented as an extended
graph representation that has not only a grid structure, but
also a non-grid structure of proximity edges that connects
nodes that are near in 2D positions. Also, GCN model for
graph matching is extended by constructing a deep-layer
GCN.

The Contributions of the paper are as follows:
(1) Node-wise feature vectors are extracted to better rep-
resent each node using GCN with deep layers to increase
matching accuracy between two graphs.
(2) New graph representation of projected patterns where
nodes are connected not only for vertical and horizontal
directions to build grid structures, but also for all the adjacent
nodes within threshold to increase the density of recovered
shape is proposed.
(3) Deep layered GCN [5] is adopted and modified to achieve
matching between two graphs even though the topologies are
different.

II. RELATED WORKS

For endoscopic diagnosis and treatment, 3D information
is desired for many purposes. Thus, many researches are de-
veloping 3D reconstruction methods. These methods include
photometric information [6]–[10], or texture information
based on shape-from-motion (SfM) techniques [11], [12].
Photometric information heavily rely on source light inten-
sity and characteristics and surface albedo; thus, absolute
distance accuracy is limited. SfM-based approaches have
problems with texture requirements and scale ambiguity.

Projecting structured light for has been used for practical
applications for 3D scanning purposes [13]. For endoscope
systems, scale factor of the the pattern projector is important.
Thus, projection of static pattern is an inevitable choice
[1]–[4]. One severe problem for static-pattern-projection
approach is that the captured pattern that are distorted
or fragmented should be stably matched with the original
pattern. despite that the captured patterns tend to be degraded
by environmental conditions, such as noise, specularity, blur,
etc.
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Fig. 1. System configuration.

Recently, deep-learning-based approaches are used to find
correspondences between stereo-pair images [14], [15]. They
have potential for outperforming existing correspondence
estimation methods. For active stereo, the matching should
be done between a captured image and the original pattern,
where cross-domain matching is necessary. For this purpose,
Furukawa et al. [1] proposed to represent the captured
patterns with a graph, and predict the correspondence by
GCN-based classification.

III. METHOD

A. System configuration

In this study, a projector-camera system was constructed
by attaching a fiber-like micro-pattern projector to a standard
endoscope. The EG-590WR endoscope from Fujifilm and the
pattern projector equipped with a diffractive optical element
(DOE) were used to achieve structured light illumination.
The pattern projector can be inserted into the instrument
channel of the endoscope, and the pattern is projected onto
the surface in front of the endoscope head (Fig.1(left)). The
pattern has a grid structure with a size of 21 × 21. Each
horizontal edge of the grid structure is shifted to vertical
direction to make gaps between adjacent edges (Fig.1(right)).
To make unique pattern for local region using the gap in
order to achieve stable correspondences between graphs, the
sign and the size of each gap is carefully encoded in our
method. In addition, there are nine grid points which is
bigger than other elemnts in the pattern, however, they are
not explicitly used in our method, since our new GCN is
powerful enough to find correspondences without training
them, whereas, the nine markers are explicitly trained and
used for calibration in the previous method [1].

B. Overview of the Reconstruction

This section provides an overview of the 3D reconstruction
process. The pattern of Fig.1(right) is projected onto the
target surface, and the image is captured by the endoscopic
camera. The main process of the active stereo method is to
extract the pattern from the image and to map each point
of the pattern to the original (projection) pattern. The grid
structure of the pattern shown in Fig.1(right) is represented
as a graph. Also, codes (gaps) of each grid points are
represented as node attributes. After a graph is also extracted
from the captured image, each node of the graph should
be mapped to the corresponding grid points of the original
pattern. This process is a graph matching problem.
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Fig. 2. Node-wise similarity calculation.

For extracting the graph from the captured image, we use
deep neural network method to robustly extract the edges
to build the grid structure as well as code information for
each grid point. Than, the obtained graph from the image
is matched with the original graph using GCN, which is a
neural network that performs convolution-like operations on
node-wise feature vectors. In the method of Furukawa et al.
[1], an input of GCN was just single graph constructed by
captured image and directly output correspondence map of
IDs, which was assigned on (original) graph. The problem
of this approach is that the network tends to be huge and
over-fitted to training data, which is a common problem of
classification task on deep neural net. In this paper, to solve
the problem, we use a GCN, but feed two graphs as the input
and output not single IDs, but simliarity values for each node;
details are described in the followings.

C. GCN-based Correspondence Estimation

Let Gd be the graph obtained from the image, and Gp

the graph of the original pattern. Furukawa et al. [1] solved
the problem of assigning a corresponding node of Gp to each
node of Gd as a classification problem using a GCN. In their
method, GCN is applied to Gd, and for each node of Gd,
the corresponding node ID of Gp is directly estimated.

In this paper, we take another approach. We apply a GCN
model to both Gd and Gp, instead of only Gd. As a result, the
node-wise feature vectors of the both graphs are converted
by the GCN. In this process, feature vectors of each node is
convolved with neighbor nodes. This operation is repeated
by layers-by-layers. In this approach, the role of the GCN
is to aggregate the feature vectors of neighboring nodes
to compute a feature vector that is suitable for node-wise
matching.

The advantage of such an architecture is that it avoids
solving a classification problem with a large number of
classes. In Furukawa et al. [1], the GCN needs to solve the
Np-class classification if Gp has Np nodes, thus, the size of
the network and the required training data increases as Np

increases. In the architecture of this paper, the dimensionality
of the GCN output can be much smaller than Np.
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Fig. 3. The radius for adjacency nodes. In (a) the grid edges are shown
in blue, and the proximity edges in orange. (b) and (c) show the change of
the proximity edges with the thresholds of (b) 100 [pix] and (c) 200 [pix].
The average number of the proximity edges of a node were (b) 35.2 and
(c) 127.2, respectively.

The flow of the proposed method is shown in Fig. 2. A
GCN is applied to both Gd and Gp. If the number of nodes
in Gd is Nd and the number of nodes in Gp is Np, the
GCN produces Nd feature vectors from Gd and Np feature
vectors from Gp. By representing these features as matrices
Fd and Fp, each element of the multiplied matrix FdF

>
p

is the cosine similarity between the nodes of Gd and Gp,
and the correspondence is obtained by row-by-row argmax
operation.

The GCN is trained by supervised manner. For the cosine
similarity, we optimize the GCN by using log softmax cross-
entropy as the error function. A large amount of training data
with ground-truth correspondences are generated by using
CG, which is described in Sec. IV. Note that similarity value
can efficiently avoid over-fitting effect on classification, and
this is another important advantage of the proposed method.

D. Graph Construction with Proximity Edges

To efficiently conduct matching between two graphs, same
topology is usually assumed. For examaple, in the work of
Furukawaet al. [1], grid structure is expected as the input,
i.e., the edges are either vertical or horizontal lines of grid
structure. The disadvantage of the method is that graph
construction process is usually unstable, because wrong
edges are frequently detected by noise or some edges are
missing by similar reason. Since the features extraction in
GCN is done by convolution via edges, unstable graphs may
decreases the accuracy of correspondence estimation.

To deal with this problem, in this paper, edges based on the
proximity of the positional relationship of the nodes are also
generated in addition to the detected horizontal and vertical
lines. In our implementation, two nodes are connected, if
their distance is less than a certain length. This allows us
to improve the accuracy of GCN estimation, because the
additional connections between nodes increases the feature
aggregation, even if the pattern in the image is fragmented
and the number of grid connections of some nodes are
too small. Fig.3 shows the proximity edges generated for
distance thresholds of 50, 100, and 200 pixels. Note that
simple implementation sometimes does not converge well or
take a huge computational time, which is solved by our new
GCN using residuals described in the next section.

(a)

(b)

(c)

…

…

…

Fig. 4. Some examples of the training data. (a) Shape models for the pattern
projection, (b) synthesized training data, and (c) the ID images whose pixel
values represent the IDs of the nodes in (b).

E. Deep GCN with Initial Residuals

It has been reported that increasing the number of layers
in a GCN leads to over-smoothing, gradient loss, and poor
discrimination accuracies [16], [17]. Chen et al. proposed
GCN-II as a GCN that is less prone to over-smoothing [5].
For each layer of GCN-II, the initial data of the graph is
input as a skip connection, and identity mapping is added to
the result of operations in each layer.

We apply GCN-II for better correspondence estimation. In
GCN-II, a hyper parameter αl that define the weight of the
skip connection, and β for the identity mapping are used.
After experimental trials, we decided to use αl = 0.5 and
β = 0. In the experiments shown later, we tried up to 20
layers as the GCN model.

IV. EXPERIMENTS

Since it is difficult to obtain a large number of endoscopic
images and to annotate the ground-truth correspondences
manually, a training data set was synthesized using CG-
generated images as follows. First, we prepared a shape
model of a plane modulated by sin waved bumps (Fig.4(a)).
The sinusoidal modulation mimics shapes inside organs with
folds. The pattern of Fig.1(right) was projected onto the
shape model using projection mapping. Then, by overlaying
real endoscopic images onto the synthesized pattern as
textures, images shown in Fig.4(b) were obtained. Simulta-
neously, images colored with correct node ID were generated
as shown in Fig.4(c), where code IDs were encoded by R
and G channels of the image with ID = R+ 256 ∗G.

Further image processing was used to create disconnec-
tions in circular and grid-like region separations as shown in
the second and the third columns of Fig.4(b),(c). These are
for imitating disconnections or pattern fragmentations from
occluding boundaries often caused by folds of surfaces inside
organs. From these images, we created pairs of graphs and
ground-truth correspondences for the training data.
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Fig. 5. Learning processes with different configurations of the proximity
edges (different distance thresholds). The dashed lines mean loss, and the
solid lines means accuracies. The model is GCN-II with 20 layers.

TABLE I
ACCURACIES FOR CONFIGURATIONS WITH GCN/GCN-II,

WITH/WITHOUT PROXIMITY EDGES, AND SHALLOW/DEEP LAYERS.

Layer: 5 Layer: 20
with without with without

proximity proximity proximity proximity
GCN 0.929 0.851 0.721 0.790

GCN-II 0.923 0.840 0.942 0.892

To show effectiveness of the proximity edges, we con-
structed graphs with and without proximity edges. We gen-
erated graphs with different distance thresholds for the prox-
imity edges, with 50, 100, and 200 pixels. As the threshold
increases, more proximity edges are generated. Fig.5 shows
the accuracies (solid) and the training losses (dashed) in
the training processes, for the same inputs with different
proximity edge configurations. The GCN model is GCN-
II with 20 layers. The dashed lines show the changes in
losses and the solid lines show the accuracies. Accuracies
are evaluated from the CG-generated data with ground-truth
that are separated with the training data. Fig.5 shows that, as
the proximity edges increase, accuracy of the correspondence
predictions becomes better.

We also examined accuracies for different configurations
of GCN models and graph representations, where the GCNs
are constructed with a normal GCN layers or GCN-II layers,
with or without proximity edges, and with GCN models
with 5 or 20 layers. Table I shows the accuracies for
the configurations. The table shows that use of proximity
edges improved the result, and combination of GCN-II and
deep layer improved the result. 20 layers of normal GCN
operations was badly performed than 5 layers of normal GCN
operations.

For further examining how the proximity edges and
deep/shallow GCNs improve the accuracies, we generated
images with three different conditions of data disturbance
levels: ‘condition A’ without data disturbances, ‘B’ with a
moderate noises and pattern fragmentation, and ‘C’ with a
strong noises and string pattern fragmentation as shown in

GCN, Layer: 5

Correct:       Incorrect:

1.0 1.0

0.76 0.85

0.68 0.74

GCNII, Layer: 20Input

A

B

C

Fig. 6. Visualization of correctness/incorrectness by the inference. We
applied our method to the three inputs as examples. A:good condition,
B:middle condition with moderate pattern fragmentation and small noises,
C: bad condition with larger fragmentation and noises.
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Fig. 7. Accuracies for 5-layer GCN and 20-layer GCN-II for samples A,
B and C in Fig.6.

Fig.6 (left column). They are then tested by deep (20-layer
GCN-II) and shallow (5-layer GCN) models for different
proximity edge conditions (distance thresholds with 0, 50,
100, 150 and 200).

Fig.6 (middle/right columns) and Fig.7 show the results.
From Fig.7, as the number proximity edges increases, the
accuracies improved. Also, badly conditioned images are
more improved by more proximity edges. Note that increas-
ing proximity edges results in more computational cost,
thus there are trade-offs between computational costs and
accuracies. Fig.7 also shows that deep models constantly out-
performed the shallow model. Fig.6 (middle/right columns)
show that the accuracies at pattern discontinuities are im-
proved for the deep model.

Examples of 3D reconstruction results of real endoscopic
images are shown in Fig.8. The input images are surfaces in-
side a pig’s stomach taken by an endoscope with structured-
light projection. Fig.8 (a.1) shows the image with small
folds, and Fig.8(b.1) shows the image with large folds. We
compared the restoration results using a shallow model (5-
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Fig. 8. Reconstruction results for real endoscopic images. The input image
include (a.1) shallow fold and (b.1) deep fold. (a.2) is visualized proximity
edges of (a.1). Results from (a.1) are (a.3.1) 5-layer GCN without proximity
edges, (a.3.2) 20-layer GCN-II without proximity edges, and (a.3.3) 20-
layer GCN-II with with proximity edges. The results obtained from (b.1)
are shown similarly.

layer GCN) and deep models (20-layer GCN-II with and
without proximity edges.

As can be seen from the images, the reconstructed area
with the deep model was larger than that of the shallow
model. Aslo, using the proximity edges results in better
reconstruction. In particular, differences of reconstructed
area were concentrated around folded shapes. These results
indicate that GCN-II with deep layers using proximity edges
performed the best for real images, similarity to the results of
CG images shown in Fig.7. The proximity node connections
shown in (a.2) and (b.2), connect regions across folded
shapes, where disconnection of the grid often occurs, and
exchanged feature information between the regions. For
(a.1), the proposed method (a.3.3) recovered 201 percent
more points than the conventional method(a.3.1), and for
(b.1), 183 percent more ((b.3.1) and (b.3.3)).

V. CONCLUSION

In this paper, we proposed a matching algorithm using
a GCN for correspondence estimation in a 3D endoscope
system based on active stereo. A grid pattern with code
features is projected onto the target, and the grid structure
was extracted from the captured image by image processing
using U-Nets. The grid structure was graphed, and a GCN
was applied to both the graph obtained from the image and
the graph of the original pattern, and correspondences are
obtained by node-wise matching the outputs. In addition to
the edges representing the grid structure, edges representing
proximity between grid points are added to improve the
stability. We also implemented deep layer GCN models
using GCN-II and conducted comparison experiments. As a
result, we confirmed that the accuracy becomes better when
proximity edges are used, especially when the condition of

the input is bad. Also, deep-layered models using GCN-II
was shown to outperform shallow models or models based
on naive GCN.
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