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Abstract— One of the most basic nonlinear Partial
Differential Equations (PDEs) to model the effects of
propagation and diffusion is Burger’s equation. This puts
great emphasize on seeking efficient versatile methods for
finding a solution to the forward and inverse problems of this
equation. The focus of this paper is to introduce a method for
solving the inverse problem of Burger’s equation using neural
networks. With recent advances in the area of deep learning,
a Physics-Informed Neural Network (PINN) is a category of
neural networks that proved efficient for handling PDEs. In
our work, the 1D and 2D Burger’s equations are simulated
by applying a PINN to a set of domain points. The training
process of PINNs is governed by the PDE formula, the initial
conditions (ICs), the Boundary Conditions (BCs), and the loss
minimization algorithm. After training the network to predict
the coefficients of the nonlinear PDE, the inverse problem
of the 1D and 2D Burger’s equations are solved with an
error as low as 0.047 and 0.2 for 1D and 2D case studies,
respectively. The wave propagation model is accomplished with
an approximate training loss value of 1×e−4. The utilization of
PINNs for modeling Burger’s equation is a mesh-free approach
that competes with the commonly used numerical methods as
it overcomes the curse of dimensionality. Training the PINN
model to predict the propagation and diffusion effects can
also be generalized to address further detailed applications of
Burger’s equation with complex domains. This contributes to
clinical applications such as ultrasound therapeutics.

Index Terms— Neural Networks, Burger’s Equation, Inverse
Problem, Mathematical Modelling.

I. INTRODUCTION
Mathematical modelling is the designated method used

to meet the demand in simulating clinical applications in
hopes of achieving efficient and accurate conforming of the
physical reality in applied procedures or inferred diagnos-
tics [6], [9]. The real physics of the phenomenon cannot
often tolerate the assumptions implied by common analytic
procedures as linearization can occur or they can relatively
undermine system nonlinearities. Traditional methods tend
to transform the equation to a simpler version, provide the
solution in the form of a converging series, or proceed in a
converging iterative scheme to reach the solution [5]. This
explains the increasing importance of seeking a solution for
nonlinear Partial Differential Equations (PDEs) that should
align correctly with the physical phenomenon [1], [2], [3],
[4]. Consequently to this need in this field, numerical solu-
tions of PDEs have been a research highlight for the last
couple of decades. Conventionally, PDEs are solved via
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numerical methods like finite difference methods (FDM) or
finite element methods [10], [11], [20]. These methods can
suffer from the curse of dimensionality [7].

Burger’s equation is a non-linear diffusive PDE seen very
often in applied science fields. It is frequently used to
describe a system of propagation and diffusion effects. The
solution to the forward and inverse problems of the Burger’s
equation have been a significant contribution in research, and
it remains in study due to the beneficial insights it presents in
physical and clinical applications [16]. The inverse problem
in precise is naturally ill-posed (small changes in data causes
major changes in the solution). In ultrasound therapeutics
like the noninvasive HIFU procedures [17], [18], [19], the
propagation and diffusion of ultrasound waves travelling in
different layers of the human body needs to be closely
observed and studied in order to apply therapy or induce
diagnostics.

Previous literature include the proposals of a numerical
solution by Gamzaev et al. [12] which presents an implicit
difference scheme algorithm that avoids iteration of the solu-
tion aiming to restore the boundary behaviour and the source
term. There is also the approach proposed by Raissi et al. [8]
which is a solution for the 1D inverse problem of Burger’s
equation using PINN that encourages the extension of this
approach to the 2D case. Gosse et al. [13] proposed filtered
gradient method that focuses on solving the inverse problem
of the 1D Burger’s equation with an iterative strategy. Most
of these traditional methods handle a single dimensionality at
a time. In addition to this restriction, their grid-based origin
drives them to suffer from the curse of dimensionality.

Physics-Informed Neural Networks (PINNs) are presented
as a novel contribution in that field. PINNs are designed
for solving PDEs through sufficient training of the deep
learning network. The concept of PINNs relies on building
Feed-forward Neural Network (FNN) to take in spacial and
temporal variables as an input, applying a chain of linear
and nonlinear transformations according to the weights and
biases, and then propagate the results through these layers via
an activation function to produce a prediction in the output
layer. The proposed method of solving the inverse problem
of Burger’s equation using PINN is mesh-free,therefore
overcoming the weakness existing in the conventional grid-
based methods. It also performs with rivaling accuracy due
to training and prediction processes [7].
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II. BACKGROUND

A. Burger’s Equation

Due to the major improvements in computational capa-
bility, there has been an increased interest in studying the
physical and mathematical significance of Burger’s equation.
It is one of the most common hyperbolic problems and
nonlinear PDEs to describe the propagation and diffusion
effects of a wave in 1D or 2D in formulas shown in (1) and
(2) respectively:
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where velocity, space, time and kinematic viscosity are
represented by u, x, t and ν, respectively. Remaining still is
the challenges for the accuracy and convergence of various
numerical solutions. The engineering difficulty of acquiring
a solution comes from the nonlinear term u∂u

∂x and from
the diffusive term (ν)∂

2u
∂x2 in the original equation (1). This

is similar but with an expanded number of dimensions in
(2). Burger’s equation is famous for describing many phys-
ical phenomena like shock wave theory, longitudinal elastic
waves in isotropic solids, and nonlinear wave propagation
[5], [14], [15].

B. Physics-Informed Neural Networks (PINNs)

Solving this problem requires a brief overview of Deep
Neural Networks (DNNs) and the method of Automatic
Differentiation (AD). Out of the many different types of
Neural Networks (NN) such as convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs), in
our approach, we selected the Feed-forward Neural Networks
(FNNs) as it is appropriate for handling the majority of PDE
problems.

NL(x) : Rdinput → Rdoutput (3)

The notation in (3) represents an NN composed of L-
layers, L−1-hidden layers with Nl,Wl, and bl that represent
neurons, weights, and biases, respectively in every layer l.
Fig. 1 shows a simplified diagram of a PINN. A series of
nonlinear and linear transformations are applied to the input
of the FNN to produce the output in the final layer. The train-
ing and testing losses are optimized through minimizing the
error by incorporating known minimization methods like L-
BFGS-B and Adam [7]. The DNN uses AD to construct the
equation and gradually predict its coefficients. This is done
by handling Burger’s equation as a compositional function.
The output error of PINN is maintained by formulating the
PDE, the Initial conditions (ICs), and Boundary Conditions
(BCs). The number of training points, the distribution of
data samples, the number of training epochs, and the PINN
architecture (layers and neurons) are highly dependent on
the explored problem. The PINN output for the case of the
Burger’s equation inverse problem is the predicted coefficient
values of the PDE.

Fig. 1. A diagram of the PINN algorithm used for predicting the
domain behaviour according to Burger’s Equation. The upper neural network
represents the solution u(x, t) of the PDE.

III. METHODOLOGY

To model this problem, DeepXDE [7] is utilized. Deep-
XDE is a python library for implementing PINNs. Using
this library, the forward problem can be implemented taking
into consideration ICs, BCs, and the formula of the PDE.
Fig. 2 and Fig. 3 show the construction of training data in
the forward problem in both 1D and 2D along a timeline
of multiple snapshots. In turn, the inverse problem is solved
with minor changes and with the addition of the training data
points induced from the forward problem.

Burger’s forward problem is solved as an initial step to
create the training data for the inverse problem. A random
selection of the solution points from the forward solution
is then exported as training data to plug into the inverse
problem. Performing this procedure provides the advantage
of defining the geometry of study, the number of training
points, and other variables needed to prepare the training set
for the inverse problem. To formulate the problem, we define
the coefficients of the equation as λ = [λ1, λ2] as shown in
(4) and ((5) ). Then, the PINN architecture is implemented
in DeepXDE with the previously specified ICs and BCs. The
PINN is then trained with the data acquired from the forward
problem. For the exact solution coefficients, the values of λ1
and λ2 are set to 1 and 0.01/π, respectively. These are also
the same coefficient values used for the forward problem.
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Fig. 2. Solution of the forward nonlinear wave propagation. The predicted
solution of the 1D Burger’s equation forward problem is used as a training
data pool for the 1D inverse problem.

Fig. 3. Solution of the forward nonlinear wave propagation. The predicted
solution is used as a training data pool for the 2D inverse problem.
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IV. RESULTS AND DISCUSSION

The results discussed here is the best of a series of
performed PINN executions using different number of PINN
architectures, loss weights, and training epochs. For both the
1D and 2D inverse problems setups, the PINN activation
function is fixed to be a tanh function.

A. 1D Burger’s Equation

For the setup of the 1D Burger’s equation model, the IC is
as in (6) and we set Dirichlet BC as in (7) in a line geometry
domain that spans the space [-1,1] and time [0,1].

fIC(x, 0) = −sin(πx) (6)

fBC(−1, t) = fBC(1, t) = −sin(πx) (7)

The PINN Architecture is built of 7 layers with 50 neurons
in each layer, and it trains through 40,000 epochs. The
learning rate is kept constant to 1e−3. The number of training
points utilized from the forward problem is 10,000 randomly
selected from the pool of the forward predicted solution.
The training points are assigned a higher loss weight than
the PDE, IC, and BC loss weights even though they all
contribute to the training accuracy. This allows the DeepXDE
framework to emphasize learning from the data points. The
low training and testing loss values measuring at 8.3e−04

and 3.5e−04, respectively asserted the prediction of the λ’s
in the PDE. The predicted and the exact coefficients are
presented in Table. I. The first row shows the exact 1D
Burger’s equation, and the second row shows the predicted
coefficients. The last two rows are the computed error values
for the first coefficient (λ1) and the second coefficient (λ2).

TABLE I
PREDICTED SOLUTION OF THE 1D BURGER’S INVERSE PROBLEM

Exact PDE ut + 1.000uux + 0.003183uxx = 0
Predicted PDE ut + 0.999uux + 0.003336uxx = 0
λ1 error 0.001347
λ2 error 0.047933

Assigning the appropriate weights for learning the solution
points, the domain geometry, the initial state, and boundary
of the defined geometry made the PINN architecture declared
above capable of predicting an output λ1 that is almost equal
to the exact solution with an error in the order of 1e−3 and
a λ2 error as low as 0.047 which exceeds the accuracy of a
previously recorded value in the literature [8].
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B. 2D Burger’s Equation

In the 2D Burger’s equation, the IC and Dirichlet BC
are set as in (8) and (9), respectively. The simulation is
implemented to be in a rectangle geometry domain that spans
the space x [-1,1] , y [-1,1] and time [0,1].

fIC(x, y, 0) = sin(2πx)sin(πy) (8)

fBC(−1, y, t) = fBC(x,−1, t)
= fBC(x, 1, t)

= fBC(1, y, t)

= sin(2πx)sin(πy) (9)

The PINN architecture metrics are slightly increased here
to offer improved accuracy as the studied domain is extended
from a line geometry to a rectangular domain. The PINN
Architecture is composed of 7 layers with 55 neurons in each
layer, and 17,000 training epochs. The learning rate for the
2D domain is fixed to 1e−3. The number of training points
is 10,000 randomly sampled points created by the previously
solving the forward problem. This PINN performed at a
training loss of 7.5e−2 and a testing loss of 3.3e−2. The
convergence rate for this problem is not as high as the
1D case. This implies the need for a larger PINN and
greater number of epochs that was not performed due to
limited available computational resources. Table. II shows
the solution of the 2D Burger’s inverse problem for setup
values explained in this section. The first row shows the
exact 2D Burger’s equation, and the second row shows the
predicted PDE coefficients. The prediction shows a λ1 error
of 0.08 with the given PINN architecture. The λ2 error in
2D Burger’s equation requires tuning the architecture and
loss weights further to achieve an improved accuracy such
as in the 1D case. However, for a modest setup close to the
setup metrics of the 1D case, the resulting error by itself is
motive for optimizing with deeper PINN architectures and a
further tested weight loss distribution.

TABLE II
PREDICTED SOLUTION OF THE 2D BURGER’S INVERSE PROBLEM

Exact PDE ut + 1.000u(ux + uy) + 0.003183(uxx + uyy) = 0
Predicted PDE ut + 0.919u(ux + uy) + 0.003867(uxx + uyy) = 0
λ1 error 0.081209
λ2 error 0.214896

V. CONCLUSIONS
Burger’s equation is the nonlinear wave propagation PDE

model attempted in this paper. The reconstruction of the PDE
was made possible from a provided set of data points along
with specified BCs and ICs fed into a PINN algorithm to
predict the closest values of coefficients to the ones in the
exact PDE. This makes this approach open for continuous
error optimization. Nevertheless, the proposed approach for
solving the inverse problem of Burger’s equation is flexibly
applicable for more complex geometrical domains contribut-
ing significantly for clinical applications such as improved

image reconstruction in ultrasound therapeutics. Further re-
search to this proposed solution of the inverse problem can
adopt a better inclusion scheme for the randomly sampled
points to the training set of the PINN. This feature is
referenced in [7] as Residual-based Adaptive Refinement
(RAR). RAR implementation includes sampling points in
training according to the mean residual error instead of
the Randomness in point selection. This offers an improved
technique in the DeepXDE framework.
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