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Abstract— Melanoma detection is a crucial yet hard task
for both dermatologists and computer-aided diagnosis (CAD).
Many traditional machine learning algorithms including deep
learning-based methods are employed for melanoma classifica-
tion. However, more and more complex network architectures
do not harvest a leap in model performance. In this paper, we
aim to enhance the credibility of CAD approach for melanoma
by paying more attention to clinically important information.
We propose a Zoom-in Attention and Metadata Embedding
(ZooME) melanoma detection network by: 1) introducing a
Zoom-in Attention model to better extract and utilize unique
pathological information of dermoscopy images; 2) embedding
patients’ demographic information including age, gender, and
anatomic body site, to provide well-rounded information for
better prediction. We apply a ten-fold cross-validation on the
latest ISIC-2020 dataset with 33,126 dermoscopy images. The
proposed ZooME achieved state-of-the-art results with 92.23%
in AUC score, 84.59% in accuracy, 85.95% in sensitivity, and
84.63% in specialty, respectively.

Clinical relevance— This work establishes an efficient
melanoma detection method with pathological and demographic
information in consideration.

I. INTRODUCTION

Melanoma is a serious type of cancer accounting for a
majority of skin cancer deaths. According to the American
Cancer Society, new diagnoses and new deaths of melanoma
are expected to reach 106,110 and 7,180 respectively in the
United States for 2021, and the numbers are still increasing
[1]. Developing detection procedures to make early and
accurate diagnosis of melanoma is of great importance to
increase the survival rate.

Traditionally, dermatologists used to diagnose melanoma
based on dermoscopy images with characteristics including
shape, color and texture in consideration. However, early-
stage melanomas have similar morphological features as skin
moles, even experienced experts would be easily confused.
Over the past two decades, computer-based methods for
automatic melanoma diagnosis emerged [2] and freed derma-
tologists from the predicament of relying on manual judge-
ment alone. Various algorithms have been proposed for the

1Xiaoyan Xing, Pingping Song, Kai Zhang, and Yuhan Dong are with
Shenzhen Internation Gratuate School, Tsinghua University, ShenZhen,
China. dongyuhan@sz.tsinghua.edu.cn

2China International Exchange and Promotive Association for Medical
and Health Care, Beijing, China.

3Fang Yang is with the Department of Dermatology, Shenzhen People’s
Hospital (The Second Clinical Medical College, Jinan University; The
First Affiliated Hospital, Southern University of Science and Technology),
Shenzhen, Guangdong, China. yangfang3013@gmail.com

4Candidate Branch of National Clinical Research Center for Skin Dis-
eases.

† Co-corresponding author

Zoom-SE 
module

CNN

Malignant

Benign

Malignant

Benign

CNN

Common Methods

ZooME Melanoma
Input: Dermoscopy images

Age
Gender
Anatomic site

Metadata
Embedding

Fig. 1. The overview of our proposed ZooME framework compared to
the common framework. Green arrow indicates the common CNN based
melanoma detection, which only uses dermoscopy images as inputs, and
feed the CNN. Blue arrow represents ZooME, in which Zoom-SE module
and patients’ metadata are added to the CNN architecture to get the final
prediction.

segmentation, feature extraction and melanoma classification
[3]. The task has been further simplified with the advent
of deep learning methods [4]. However, the lack of large
collections of labeled data and the poor interpretability lead
to the gap between the existing deep convolutional networks
designed for melanoma diagnosis and clinical significance.
To bridge the gap, we aim to give more information to the
model from both pathological and epidemiological perspec-
tives. From pathological aspect, one of the most common
used procedural assessment for dermatologists is referred to
as ABCD rule [5], which includes asymmetry, border, color,
and diameter. Aside from common traits existed in natural
images, medical images carry more pathological information
which are hard to be extracted by traditional convolutional
neural networks (CNN). Moreover, patients’ demographic
characteristics including age, gender etc. are recorded and
can be further utilized. Prior studies verified the relationship
between melanoma incidence and demographic factors [6]
[7]. To the best of our knowledge, few deep learning based
methods have taken this relationship into consideration.

In this paper we propose a Zoom-in Attention and Meta-
data Embedding (ZooME) network, to bridge the gap be-
tween computer-aided diagnosis of melanoma and clinical
significance. Our work has three main contributions:

• We provide an efficient melanoma detection framework
ZooME and yield state-of-the-art results on the newest
ISIC-2020 datasets.

• We present a flexible Zoom-in Attention module based
on squeeze-excitation (SE) mechanism [8]. This module
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can be embedded in any existing CNN models to fully
utilize more pathological information.

• We introduce Metadata Embedding (ME) mechanism,
which strengthens the framework by taking demo-
graphic factors into consideration.

II. RELATED WORK

A. Learning Based Melanoma Detection
Rubegni et al. [3] introduced artificial neural network

(ANN) to automatic melanoma diagnosis, which only applied
a few feature annotations and obtained a better accuracy
than traditional pattern recognition methods. Recently, CNN
has been studied to complete the classification task for
dermoscopy images [4]. Maron et al. [9] proposed a CNN
based melanoma classification by employing ResNet50 as the
feature extraction backbone, which outperformed on average
a team of senior dermatologists in terms of sensitivity.
Reisinho et al. [10] combined three deep CNN architectures
as the backbone for melanoma detection but obtained a
limited increments.

However, simply increasing network complexity does not
result in significant improvements in terms of classification
performance. Clinically, dermatologists make diagnosis fol-
lowed by ABCD rules, which have not been adequately
learned in common CNN architectures.

B. Demographic Characteristics for Melanoma Detection
Apart from image information, patients’ physiological data

can play an important role in clinical diagnosis. Andrew
et al. [6] concluded that patients’ age is highly relevant
with melanoma morbidity through a cohort study of 8772
patients. Yuan et al. [7] found that patients’ demographic
characteristics including gender, age and race are risk factors
of melanoma.

Inspired by the relationship between melanoma incidence
rate and patients’ physiological traits verified by previous
works, we aim to utilize this relationship to assist clinical
diagnosis.

III. METHOD

As introduced in Section II, the common architecture
of CNN based classification models are mostly designed
for natural images. A fine-tune CNN by possibly utilizing
more unique pathological information carried in dermoscopy
images is of great clinical importance. Meanwhile, demo-
graphic characteristics including age, gender, etc. are not
fully considered in learning based melanoma detection meth-
ods nowadays.

To address these two issues mentioned above, several
things need to be done: 1) a comprehensive feature extraction
backbone which can pay more attention to pathological
information of the dermocopy images; 2) a mechanism which
can utilize patients’ demographic information.

Thus we propose ZooME, which can: 1) give more em-
phasis to pathological traits a special Zoom-in SE module.
2) introduce patients’ age, gender and anatomic sites to
the last step of feature extraction by Metadata Embedding
mechanism. Details will be demonstrated below.

A. Zoom-SE Module

SE module [8] is a comprehensive attention mechanism
in natural image classification. Inspired by this, we propose
Zoom-in SE (Zoom-SE) module to give extra attention to
the clinically interested information of dermoscopy images.
Zoom-SE consists of three parts: 1) zoom-in and squeeze;
2) channel re-weighting; 3) spatial re-weighting. The details
of each component are introduced below.

1) Zoom-in and Squeeze: Zoom-in is employed to find
the most unique area in the given feature map u. The input
feature map u ∈ RC×H×W is transformed by the 4 × 4
adaptive max pooling (AMP) into a statistic z ∈ RC×4×4.
We then squeeze z to a channel-wise statistic s ∈ RC×1×1.
Unless otherwise stated, the subscript c of all variables in
the following formulas represents the c-th component of the
corresponding variables, i.e. sc represents as the c-th element
of s. sc can be transformed by the squeeze operation Fsq:

sc = Fsq(zc) =
1

H ×W

H∑
i=1

W∑
j=1

zc(i, j), (1)

where H is height and W is weight of zc, zc(i, j) is the
(i, j)-th pixel of zc.

Remark: In this task, H and W are set to 4 as the same
scale as the adaptive pooling. Mathematically, the adaptive
pooling size can be set to any scale, 4×4 is the best selection
after multiple scale experiments.

2) Channel Re-weighting: After Zoom-in and Squeeze
operation, s is squeezed into a C channel statistic, therefore,
we can apply a channel re-weighting mechanism by using
fully connected (FC) layer W. Same as the SE-Module, the
channel re-weighting Fcr can be formulated in:

q = Fcr(s,W) = σ(W2σ(W1s)), (2)

where σ represents the ReLU fuction, W1 and W2 are the
FC layers. W1 ∈ RC

r ×C and W2 ∈ RC×C
r .

3) Spatial Re-weighting: After channel re-weighting, q is
a re-weighted channel-wise statistic. A spatial reweighting
transformation Fsr is employed to generate the final output
x with Sigmoid activation:

xc = Fsr(uc, sc) = sc ⊗ uc, (3)

where x = [x1, x2, . . . , xc] and ⊗ refers to channel-wise
multiplication.

B. Metadata Embedding

This module consists of two FC layers and an embedding
operation. Firstly, metadata m is encoded to a N channels
tensor t ∈ RN×1×1 (N equals to the number of channels of
x) through the FC layers; then t is embedded in the feature
map x from the dermoscopy images through channel-wise
multiplication ⊗:

o = t⊗ x, (4)

where o is the feature map after the embedding operation,
o ∈ RN×1×1.
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Fig. 2. The proposed ZooME network. ZooME consists of two branches: 1) Feature extraction backbone for dermocopy images; 2) Metadata Embedding
branch for metadata. Feature extraction backbone can be switched to any CNN-based architecture. In this case, ResNeXt50 [11] is used as the backbone.
In image feature extraction branch, the input image is firstly sent to an convolution layer with 7× 7 kernel size. After that, the features will be sent to the
residual convolution groups, where the Zoom-SE module is added to every end of residual block. Metadata embedding branch receives the information
like age, gender, and anatomy body sites as inputs. Classifier is generated by an adaptive pooling layer and a fully connected layer. The final output of
ZooME is the prediction of probability of melanoma. ⊗ refers to channel-wise multiplication. Note the architecture is simplified for better illustration.

C. Example of Using ZooME

Zoom-SE and Metadata Embedding can be easily im-
planted to the commonly used CNN architectures and en-
hance the classification ability of CNN on melanoma clas-
sification. In this work, we choose ResNeXt50 [11] as our
baseline backbone, and implant ZooME in its architecture.
Fig. 2 illustrates the architecture of the proposed network1.

The network consists of two parts:
• Feature extractor: an activate convolution layer and four

convolution groups with residual blocks to extract the
feature map from input dermoscopy images.

• Classifier: a fully connected layer with Sigmoid function
to predict the probability of melanoma.

Feature extractor takes dermoscopy image as input. Zoom-
SE module takes each residual block’s output feature map
u as input, and outputs the re-weighted feature map x. In
the next residual block, x is regarded as input. Metadata
Embedding can be regarded as a bypass branch with metadata
label as input. The encoded metadata m is embedded in the
output of last Zoom-SE module. Through multiple iterations
of the above operations, we hope the pathological and
the demographic information will be given extra attention
through channel and spatial, respectively.

Classifier takes the final feature map x as input and outputs
the final predicted probability pt of melanoma through an
adaptive pooling layer and a FC layer.

D. End-to-end optimization

Considering the imbalance of the dataset as well as the
realistic (the melanoma is a rare tumor of skin), we choose
focal loss [12] as the loss function. The loss function is given
by:

Lfocal(pt) = −αt(1− pt)γ log(pt), (5)

1Codes are available from the corresponding author on reasonable request.

where pt is the predicted probability of melanoma. αt and γ
are the hyper-parameters and set to αt = 0.25, and γ = 2 in
this work. By adopting such loss, the whole network could
be trained end-to-end.

IV. EXPERIMENT

In this section, we firstly present quantitative evaluation
compared with several state-of-the-art methods [13] [9] on
international skin image classification (ISIC) 2020 dataset2;
secondly, we apply ablation study on the proposed network
and common backbones.

A. Dataset

We use the ISIC dataset, which is an open-access reposi-
tory dataset. The ISIC dataset contains 33,126 images with
32,532 labeled as ‘benign’ and 594 labeled as ‘malignant’.
Following the distribution of the whole dataset, we split the
dataset into ten folds each contains 3,313 images (58 to 60
images are malignant) for cross-validation.

B. Settings

Data augmentation: To overcome over-fitting and to
simulate the real situation, we apply a data augmentation.
All images are randomly cropped from the central with zoom
from 0.8 to 1. Meanwhile, the images are rotated by random
angle between −30◦ and +30◦. Left-right flipping with a
probability of 0.5 is also applied. After augmentation, all
images are resized to 224×224× 3.

Implementation and Training: We implement the pro-
posed network based on Pytorch using RTX 2080 Ti GPU
with the learning rate of 1× 10−4 and batch size of 64. The
Adam optimizer [14] is employed to train the network.

2https://www.kaggle.com/c/siim-isic-melanoma-classification/data
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C. Metrics

The accuracy (ACC) serving as the only metric may
be misleading since the number of samples is imbalanced
severely. Alternatively, we adopt area under the curve (AUC)
as the premier metric and sensitivity (SE) and specialty (SP)
as supplementation.

TABLE I
QUANTITATIVE RESULT ON ISIC-2020 DATASET

Methods Accuracy Sensitivity Specialty ROC AUC

Maron et al. [9] 77.77±5.04 81.63±6.65 76.97±4.58 85.57±2.13
Kaur et al. [13] 79.88±4.38 80.77±7.01 79.17±4.23 85.85±2.01
AlexNet [15] 78.50±4.61 78.28±6.98 76.81±4.04 85.02±1.54

ZooME 84.59±2.94 85.95±2.81 84.63±3.03 92.23±1.69
w/o Zoom-SE 80.34±4.16 82.30±4.77 80.32±3.22 86.78±2.15
w/o Metadata 84.16±2.36 85.62±3.70 84.44±2.32 91.66±1.27

TABLE II
QUANTITATIVE ABLATION STUDY ON THE TWO PROPOSED MODULES

APPLYING ON THE COMMONLY USED BACKBONE

Extra Module BackBone Metric
ZoomSE Meta Accuracy Sensitivity Specialty

- - ReNet50 [16] 76.86±4.07 79.77±4.30 76.84±4.17
X - ReNet50 [16] 79.39±4.66 81.03±5.07 79.62±4.53
- - AlexNet [15] 78.50±4.61 78.28±6.98 76.81±4.04
- X AlexNet [15] 80.93±3.01 79.05±3.60 79.54±5.47

D. Experiment on ISIC dataset

For a more fair comparison, we reproduce some state-of-
the-art results. It should be noticed that all the hyperparam-
eters are carefully adjusted to achieve the best performance.
The quantitative results are reported in Table I. Our proposed
ZooME network outperforms other latest methods, in terms
of all the four metrics. Particularly, the proposed ZooME
achieved state-of-the-art result with 92.23% in AUC score,
84.59% in accuracy, 85.95% in sensitivity, and 84.63% in
specialty.

Moreover, We also apply ablation studies on the proposed
network to evaluate the contribution of each module,which
are listed in Table II. The two proposed modules enhance
the performance of ResNet50 [16] and AlexNet [15] in
melanoma detection.

V. CONCLUSIONS

In this paper, we proposed an efficient melanoma de-
tection framework, ZooME, to help CNN architectures to
better identify melanoma by not only taking pathological
information of dermoscopy images, but also combing demo-
graphic characteristics. Experimental results suggested that
ZooME network achieved state-of-the-art performance and
outperformed traditional approaches in terms of AUC score,
accuracy, sensitivity and specialty. As for future work, We
will work closely with dermatologists to apply this method
in real clinical diagnosis.
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