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Abstract— Physical therapy is important for the treatment
and prevention of musculoskeletal injuries, as well as recovery
from surgery. In this paper, we explore techniques for
automatically determining whether an exercise was performed
correctly or not, based on camera images and wearable sensors.
Classifiers were tested on data collected from 30 patients
during normally-scheduled physical therapy appointments.
We considered two lower limb exercises, and asked how well
classifiers could generalize to the assessment of individuals
for whom no prior data were available. We found that
our classifiers performed well relative to several metrics
(mean accuracy: 0.76, specificity: 0.90), but often returned
low sensitivity (mean: 0.34). For one of the two exercises
considered, these classifiers compared favorably with human
performance.

Clinical relevance— This work establishes a baseline level
of performance for automatic classification of exercise perfor-
mance in a patient population, based on two cameras or body-
worn IMUs.

I. INTRODUCTION
In recent years, there has been growing interest in au-

tomated assessment of physical therapy exercises. Physical
therapy is effective in treating and preventing mobility limit-
ing conditions and plays an important role in determining
outcomes [1]. Automated and technologically-enabled as-
sessments of exercise performance are attractive because they
yield data required to track improvement, monitor outcomes,
and they facilitate patients’ access to expert knowledge,
which can be critical for overcoming geographic and socio-
economic barriers to care [2], [3].

In this paper, we assess the capability of machine learning
algorithms to detect errors in the performance of exercises
commonly used in physical therapy and post-surgical reha-
bilitation. We recorded data from patients being seen in a
clinic for conditions of the knee or hip – such as anterior
cruciate ligament (ACL) injuries, osteoarthritis, or joint re-
placement – as well as healthy controls. The data recorded
from each subject includes video from two cameras placed
90° apart and a set of 10 body-worn inertial measurement
units (IMUs).
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For the purpose of assessing performance, we consider
two application scenarios. First, we assess generalization
error on held-out exercise repetitions, which corresponds
to the scenario in which automated assessment tools are
trained during an in-person clinic visit, and then sent home
with the patient. Second, we assess generalization error on
held-out patient data, which corresponds to the scenario in
which automated assessment tools are applied to patient data
without any prior exposure to the individual being tested. The
latter scenario is more general, but also more challenging.
We find that the average accuracy, sensitivity, and specificity
scores of our best classifier all exceed 0.70 for two different
exercises in the first scenario, but for only one side of one
exercise in the second. Finally, we compare the performance
of these algorithms to metrics of human performance in
labeling exercise errors from video, finding that the classifiers
compared favorably for one of two exercises.

II. RELATED WORK

Prior work has shown that classifiers can detect specific
patterns of movements or errors, using only data obtained
from wearable sensors [4] and cameras. On a small sample
set, Taylor et al. showed that classifiers trained on body-
worn IMU data could detect errors with high accuracy,
when the classifier is trained on data taken from the same
individual that it is tested on. However, testing on unseen
subjects caused classifier performance to be sharply re-
duced [5]. The same authors later extended these results to
multi-label classification – which detects and labels multiple
potential errors per exercise – targeting patients undergoing
rehabilitation for knee osteoarthritis [6]. In similar work,
Whelan et al. showed that random forest classifiers could
detect aberrant performance of a single leg squat exercise –
using IMU data from 83 healthy participants – with greater
than 75% accuracy, sensitivity, and specificity [7]. However,
this result was limited to a single exercise on a single side
(left), used labels from a single expert, and did not test the
classifier with data from unseen subjects. The same group
later expanded these results – testing with unseen subjects
for the purpose of deadlift exercise assessment [8] – and
reported an accuracy of 0.73. Although these classifiers were
reasonably sensitive (0.78) to errors, the reported specificity
was low (0.49), resembling the earlier results of [5]. Similarly
poor results were obtained for barbell squats (accuracy:
0.64, sensitivity: 0.70, specificity: 0.28) [9]. For bodyweight
squats and lunges, results were more promising, with both
accuracy and specificity exceeding 0.90 in both cases, and
sensitivity of 0.96 and 0.80, respectively [10][11]. Dajime
et al. developed a quality assessment system for screening
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squat, forward lunge, and single leg squat [12] exercises.
The average accuracy, sensitivity and specificity ranged from
0.74-0.85, 0.66-0.89, and 0.58-0.88, respectively.

A useful benchmark in the evaluation of automated al-
gorithms is comparison with human performance on com-
parable tasks. Whelan et al. measured the intra- and inter-
rater agreement – quantified via Kappa scores – within a
pool of 47 physical therapists and physical therapy students
asked to evaluate video-recorded exercises for errors [13].
All subjects were healthy volunteers. Overall, they found
minimal-to-moderate intra-rater agreement, and minimal-to-
weak inter-rater agreement. Moreover, agreement was lower
for errors that occurred naturally, rather than being inten-
tionally induced. Agreement varied by the type of exercise.
These results suggest that the threshold for exceeding human
performance is relatively low.

III. DATA COLLECTION

As part of a normal clinical visit, video and sensor data
were collected from 30 patients performing lower limb exer-
cises while undergoing physical therapy for conditions of the
hip or knee. Data were collected during normal appointments
within a sports medicine and rehabilitation facility. Fifteen
common lower limb exercises were chosen for monitoring,
but results for only two are reported here. Patients were
eligible for participation if they would normally be asked
to complete any of these exercises as part of their prescribed
treatment program, were aged 18 to 85, and if their body
mass index (BMI) was less than 35. Further, patients with
BMI over 30 were excluded if any cardiovascular comor-
bities were indicated in the medical record. Data were also
collected from 10 healthy controls. Select controls (7 of 10)
were instructed to simulate specific errors on a subset of
exercise repetitions, in order to increase the size of the train-
ing data set. All procedures were approved by the Carnegie
Mellon University Institutional Review Board (IRB), as well
as the University of Pittsburgh IRB, before any data were
collected.

After obtaining consent, ten inertial measurement units
(IMUs) were affixed to the arms, legs, feet, and torso of
each subject, as indicated in Figure 1. Participants were
shown video demonstrations of the relevant exercises, and
asked to perform repetitions of these exercises in full view
of two cameras. For upright exercises, participants stood
facing camera A head-on, while camera B recorded from
the participant’s right side. The angle between the cameras
was slightly less than 90o. For seated exercises, or exercises
done while lying down, the side-view camera was aimed at
the length of an exercise bed and the front-view camera was
aimed at one end of the bed.

Each Xsens Awinda (Xsens Technologies BV, Enschede,
Netherlands) wearable sensor contains an accelerometer, a
gyroscope, a magnetometer, a barometer, and a thermome-
ter [14]. Onboard processing enables the sensors to compress
high sample rate estimates of time-varying acceleration and
orientation, and to wirelessly transmit those estimates to
a data logger at 40 Hz. For this analysis, we considered

Fig. 1. Diagram of the data collection setup. Data were collected in a
roughly 10 ft by 16 ft exercise space. Subjects wore a total of ten IMU
sensors (orange), located on the trunk, wrists, and legs. During standing
exercises, subjects faced camera A, and camera B captured video from the
right side, at an oblique angle. During exercises that required the subject to
lie down, an exercise bed was placed opposite camera B.

Fig. 2. Sample data. Each line represents the mean of a sensor channel
across all reps for a particular exercise and side, and shaded regions indicate
confidence intervals. Data are aligned to the point manually labeled as
the middle of each exercise. Shaded grey bars indicate two of the feature
window epochs used to generate features. The complete list of feature
windows epochs can be found in Table I. A: Right knee pose keypoint
measured via the side camera during the left-sided step-up exercise. B: Foot
IMU accelerometer worn during the right-sided sidelying hip abduction
exercise.

the 3D acceleration and orientation estimates (expressed as
quaternions) for 70 channels of IMU sensor data.

Color and grayscale video frames were recorded by a
pair of Realsense D435 cameras (Intel Corporation, Santa
Clara, CA USA) at resolutions of 1920x1080 and 840x480,
respectively. A depth data stream was also recorded, but is
not considered here. The variable frame rate of the cameras
averaged roughly 30 Hz.

Both the IMU and video data were continuously streamed
to a solid state drive (SSD) for the duration of the partici-
pant’s physical therapy session.

Pose information was extracted from video data using
the AlphaPose algorithm and software [15]. AlphaPose is
a modern computer vision algorithm for markerless extrac-
tion of human pose information from unstructured video
streams. The Resnet152 AlphaPose model pretrained on
COCO dataset was individually applied to each frame of
the infrared video stream. Temporal information was not
considered during this pose estimation step.

The pose algorithm yields 2D pose data and confidence
estimates at the frame rate of the video streams. In total, this
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Fig. 3. Analysis pipeline. Pose and/or sensor data is segmented, and for
each segment, statistics are calculated to be appended into the features. Then
Random Forest classifiers are created from the features.

yields 100 channels of pose data, sampled at approximately
30Hz. The pelvis keypoint was treated as the origin, for the
purpose of establishing a local coordinate system. A sample
of pose data is shown in Figure 2-A.

Pose data were synchronized – between cameras, and with
wearable sensor data – via an infrared signal: a pair of
infrared illuminators were triggered by the XSens system
at the start of data collection. The pulses emitted by the
illuminators were visible in the infrared stream of each
camera. All data streams were aligned to this event.

Once aligned, sensor and pose data were interpolated
(cubic) and resampled with a constant 25 Hz sampling
rate. This caused all data sources to share a common and
consistent time base.

Once the data had been captured and processed, errors
in each participant’s exercise performance were evaluated.
Using the color video recordings, two licensed clinicians
independently labeled the timestamp of the movement errors
made by each participant. Before labeling, the clinicians
agreed on a small set of common errors associated with
each exercise (Table II). The clinicians then reviewed any
discrepancies between the two sets of labels, and agreed
on a consensus set. Both the original annotations and the
consensus set are considered in our analysis. The annota-
tion procedure was the same for both patients and healthy
controls.

A two-step procedure was used to segment exercise rep-
etitions. First, the start, peak, and end of each exercise
repetition were estimated from the accelerometer data. For
each exercise, the peak was defined to be an easily-identified
movement event that occurred mid-way through a repetition.
During a second pass over the data, segmentation of repe-
titions was visually verified and/or manually adjusted using
the video streams.

Each error annotation was associated with the closest
exercise repetition. If an error timestamp fell within the
temporal bounds of a repetition, then it was associated with
that repetition. If an error label was assigned to a timestamp
between the bounds of two repetitions, then the timestamp
was moved to within the nearest bound.

IV. ANALYSIS

The objective of our analysis is to develop an algorithm
capable of detecting the presence or absence of specific errors
during repetitions of an exercise (Fig. 3). We framed the
problem in terms of binary classification.

We chose to use a random forest classifier for the error
detection analysis. Tree-based algorithms are robust to mixed
types, outliers, and missing data. They are relatively fast
to construct, and scale effectively. Implicit feature selection
and robustness to irrelevant predictors make them well-
suited to exploratory analyses, such as this. They have also
been cited as a preferred method in related work [16]. With
ample data and labels, modern deep learning methods might
produce better prediction outcomes, but we judged a tree-
based approach to be better-suited to this relatively small
data set.

All analyses were implemented in Python, and the clas-
sifier was implemented using the scikit-learn package. Each
random forest consisted of 400 trees. The maximum number
of features to consider when looking for the best split
was set to the square-root of the number of features. The
remaining hyperparameters were set to the implementation
default values.

Features were computed over temporal windows of vary-
ing duration and displacement. Displacement determines the
center of the window relative to the peak event of each
exercise repetition. An example of a set of feature windows
is shown in Figure 2, where the gray bars represent windows
with centers spread evenly across the exercise repetition
epoch. All feature window durations and displacements are
listed in Table I. The total number of feature windows per
repetition was 47. For each feature window, a set of six
statistics were computed: the sum, mean, median, maximum,
minimum, and variance of the data within the window.

TABLE I
FEATURE WINDOW DURATIONS AND DISPLACEMENTS. ALL

DISPLACEMENTS ARE SYMMETRIC ABOUT ZERO, BUT NEGATIVE

VALUES ARE OMITTED HERE. THE TOTAL NUMBER OF DURATION AND

DISPLACEMENT PAIRS IS 47.

Duration (ms) Displacements (ms)
160 80, 240, 400, 560, 720, 880, 1040, 1200
280 0, 280, 560, 840, 1120
400 200, 600, 1000
520 0, 520, 1040
640 320, 960
760 0, 760
880 440

1480 0
1960 0

In order to assess how well the algorithm generalizes
to new data, we considered two cross-validation (CV) ap-
proaches. In both cases, data from both patients and healthy
controls were used to train the classifiers, but only data from
patients were used for testing performance.

First, we considered what will be referred to as ran-
dom subset cross-validation (RSS-CV). This approach is
a standard way to assess generalization error in machine
learning, and entails randomly selecting a fraction (30%, in
this analysis) of samples (i.e., exercise repetitions) to be held-
out for testing.

Second, we considered what will be referred to as leave-N-
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subjects-out cross-validation (LNSO-CV). Initially, we used
leave-one-subject-out cross-validation (LOSO-CV), but this
frequently yielded test data sets that contained only a single
class (e.g., no errors). The LNSO-CV approach holds out
all samples for N subjects, to be used as testing data. We
consider it an important measure of how we might expect our
algorithm to perform with new patients, for whom no prior
data are available [17]. In this analysis, we chose groups of
N=5 participants.

In each case, the mean performance metrics across 300
cross validation splits are reported. These metrics were
computed using held-out, testing data from patients only.
Controls were used only for training.

To facilitate comparison with human performance and
prior work, we compute Kappa scores for the agreement
between ground truth labels and classifier output. When
physical therapists were asked to re-evaluate videos of ex-
ercise performance by healthy subjects, at least 30 days
after a prior evaluation of the same recording, Whelan et
al. observed only minimal to moderate agreement between
the pairs of assessments [13]. For assessments in which
errors occurred naturally (i.e., they were not induced), they
reported aggregate Cohen’s Kappa values with a mean of
0.38, and 95% confidence intervals ranging from 0.32 to
0.44. When computed individually, for each of the three
exercises considered, the mean Kappa scores were 0.39, 0.40,
and 0.49.

We compare classifier performance with intra-rater agree-
ment using Cohen’s Kappa [13]. This analysis treats classifier
prediction output like a second set of labels from the same
expert, but taken on a different occasion. We view this
as equivalent to the assumption that the algorithm aims to
capture the knowledge of the clinicians, in order to replicate
their clinical decisions.

V. RESULTS

We selected data sets from 30 patients and 10 healthy
controls for analysis. Participant ages skewed young, with
17 of 30 patients under 30 years of age. Of those remaining,
only four were over 60. Among the controls, all but one were
under 30. Among patients, 17 were female and 13 were male.
The controls were less balanced, with eight females out of
ten.

The most common condition treated was sprain of anterior
cruciate ligament (nine patients), followed by pain in the
knee (five patients). A total of 21 patients were treated
for conditions involving the knee, and six were treated for
conditions involving the hip.

After the video recordings had been annotated, we selected
the two exercises with the largest number of errors for
analysis. Since the overall error rate in our data set tended
to be low, we elected to initially focus on those exercises
that we expected could furnish enough labeled samples – of
each class – to train an effective classifier.

The selected exercises were the sidelying (S/L) hip ab-
duction and the step-up. The SL hip abduction exercise is
accomplished while a subject lays on their side: the upper leg

sweeps in an arc from a position parallel with the other leg,
to a position in which the foot is elevated – such that the two
legs form a sideways V shape. The leg is then returned to the
starting position. For the step up exercise, each participant
is asked to start with both feet on a small exercise block,
elevated a few inches off of the ground. After stepping one
foot off, to come to rest on the ground, they are asked to
return to the starting position. Among the 40 participants,
all completed the step-up exercise (865 total repetitions),
but only 21 patients and 9 healthy control completed the
sidelying hip abduction exercise (617 total repetitions). The
errors for each exercise, along with the number of times each
error was observed, are in Table II.

For each exercise, subsets of errors often co-occurred,
and this caused some ambiguity in the labeling process. For
this reason – and since the most frequent individual error
accounted for only 13% and 33% of repetitions for the two
exercises, respectively – the clinicians advised that we merge
a subset of error types for the classification analysis. These
errors are marked with a red dot in Table II. We chose to
consider only these merged error classes, and to ignore the
remaining (less frequent) error types. Our analysis, therefore,
aims to evaluate binary classifiers that assign labels of error
or no-error to each exercise repetition.

TABLE II
EXERCISES AND ERRORS

Exercise Error Count

Hip abduction

Hip into any amount of flexion •
Hips rolled back or forward •
Insufficient ROM
Legs not straight (top leg)
Motion too fast

203
49
0

34
0

Step down

Excessive foot pronation
High knee valgus •
Insufficient knee flexion
Knee not in line with foot •
Pelvis tilt or drop •

8
70
40

8
110

Classifier scores for RSS-CV and LNSO-CV are summa-
rized in Table III. A few general observations can be made
about these results. First, classifiers based on features derived
from IMU data always performed better than those based on
features derived from video data. The combination of these
two feature sets often slightly improved performance. Finally,
we see a sharp decline in performance between the RSS-CV
and LNSO-CV scenarios, in every single case.

For the RSS-CV analysis – in which 30% of exercise
repetitions were held-out for testing – performance metrics
were generally high. For the SL hip abduction exercise,
every score but one was above 0.90. This is also true of the
accuracy and specificity for the step-up exercise. Although
they did not exceed 0.90, the MCC and sensitivity were still
relatively high for this exercise. For the combined feature set
(i.e., IMU+pose), all metrics exceeded 0.80. Altogether, the
classifiers performed effectively.

As expected, classification of data from unseen subjects

7559



was a more challenging scenario and the results for the
LNSO-CV analysis were more variable. Specificity scores
were generally high, exceeding 0.85 in every instance for
the combined feature data set. Accuracy scores exceeded
0.70 in every instance for the same features. However, the
sensitivity scores were mostly low. The classifiers often had
trouble detecting errors. That was especially true for the step
up exercise. A clear exception to this poor performance is the
left side of the sidelying hip abduction exercise, for which
the sensitivity was around 0.70. Although these values are at
least competitive with prior work [4], they do not match the
best performance for exercise assessments with IMU sensor
data from healthy individuals [10][11].

Although the standard errors of the mean (SEM) perfor-
mance estimates were quite small in all cases (< 0.04), it
is noteworthy that the variance of these estimates increased
dramatically in the LNSO-CV analyses – most often having
the same order of magnitude as the mean estimate. Whereas
the mean MCC metric across both exercises and both sides
was 0.28, for example, the standard deviation was 0.35. This
indicates that the classifier could frequently perform poorly,
even if performing well on average. As we discuss in the next
section, this is likely attributable to a biased distribution of
errors among the sampled participants.

Much of the prior work in this area sought to detect
errors made by healthy subjects – often with instructions to
intentionally deviate from optimal movement patterns. Such
a design has the potential advantage of distributing errors
among subjects. A study population with well-distributed
errors helps to ensure that training data samples errors
committed by a diverse set of individuals. This balance is
important to the analysis of how well classifiers generalize
to unseen subjects.

In this study, we collected data from patients that com-
mitted spontaneous errors, so there was no guarantee that
the errors would be well-distributed among individuals. For
the left side of the SL hip abduction exercise, samples for
45% (13 of 30) of participants included a mixture of exercise
repetitions with and without errors. However, the percentages
for the remaining three cases were much lower, at 23%.
That amounts to seven of 30 participants for the right side
of the abduction exercise, and nine of 40 participants for
each side of the step-up exercise. We suspect that this biased
distribution of errors likely affected the performance of our
classifiers. Indeed, the classifiers performed quite a bit better
for the left side of the SL hip abduction exercise, in which
errors were distributed more evenly. A larger sample size
could mitigate this effect.

Similar to the results in the previous section, the Cohen’s
Kappa scores for the RSS-CV analysis were high, indicating
high agreement between clinician labels and the automated
predictions. The mean Kappa score across all exercises and
sides was roughly 0.90. That is well outside of the range
reported by Whelan et al [13].

The results for the LNSO-CV analysis are again more
complex, but follow the same pattern as for the general
results of Table III. In aggregate – averaged across both

exercises and sides – the Kappa score is quite low, at around
0.20. However, this is drawn down by the poor performance
for the step-up exercise. When computed for the sidelying
hip abduction exercise only, the mean Kappa score is 0.38
– equal to the mean score reported by Whelan et al. If
only the left side of the abduction exercise is considered
(i.e., the better-performing side), then the mean Kappa score
is roughly 0.50. In at least this case, then, the classifier
predictions agree with clinician labels to an extent that
exceeds that of the intra-rater agreement observed among
trained physical therapists. In other words, the classifier can
be expected to reproduce the expert’s labels better than the
experts themselves can be expected to.

VI. CONCLUSIONS

Classifiers trained on data from the same subject to which
they are applied can effectively detect errors in the perfor-
mance of two common exercises in lower limb rehabilitation.
This analysis supports the scenario in which a personalized
classifier is calibrated while a patient performs exercises in
a clinic.

When no prior data are available for personalization, per-
formance of the classifiers declines substantially. This result
is expected, but the magnitude of the reported decline has
varied substantially in prior work. For one of the exercises we
tested, performance remained reasonably high – especially
on the left side. For the other exercise, classifier performance
was near chance. This result might be explained by the
relative magnitude of the movements involved: the exercise
for which the classifier performed poorly – the step up –
involved only small, subtle movements. More generally, we
anticipate that classifier performance would climb with a
larger sample size – primarily due to a heavy imbalance in
the distribution of samples with and without errors, across
the clinical population.

Classifiers using features derived from wearable IMUs
consistently outperformed classifiers using features derived
from video-based pose estimates. Combining the two data
sources resulted in small gains relative to the IMU-only
features. We suspect that the poor performance of the pose-
derived features has more to do with the pose extraction
method than the error classification step. In future work, we
aim to improve pose extraction and explore sensor fusion.

For one of the two exercises considered, agreement be-
tween our classifiers and clinician-provided labels was com-
parable to the intra-rater agreement reported for physical
therapists making repeated assessments. For one side of that
same exercise, the classifier exceeded the reported range of
human performance.

Although the performance of our classifiers did not exceed
all prior work in this area, most or all of that work has dealt
with healthy subjects and/or intentionally-induced errors. Our
data were obtained in a physical therapy clinic. A notable
consequence of collecting data from patients receiving care
is that errors tend to be less frequent, and less uniformly-
distributed. For example, some patients made errors on every
exercise repetition, whereas others made no errors at all.

7560



TABLE III
ACCURACY, MATTHEW’S CORRELATION COEFFICIENTS (MCC), SENSITIVITY, AND SPECIFICITY FROM ALPHAPOSE KEYPOINTS (ALPHAPOSE), IMU
DATA (SENSOR), AND COMBINED (BOTH) FEATURES TRAINED CLASSIFIERS. (I) 70/30 TRAIN-TEST CROSS VALIDATION AND (II) LEAVE-5-OUT CROSS

VALIDATION WERE EACH PERFORMED ON THE TWO EXERCISE TYPES, SIDELYING (S/L) HIP ABDUCTION AND STEP DOWN.

70/30 train-test cross validation Leave-5-out-cross validation
S/L hip abduction Step down S/L hip abduction Step down
Right Left Right Left Right Left Right Left

accuracy Alphapose 0.97 0.95 0.93 0.87 0.50 0.57 0.83 0.67
IMU 0.98 0.96 0.96 0.96 0.70 0.80 0.84 0.70
Both 0.98 0.96 0.96 0.95 0.72 0.80 0.83 0.70

mcc Alphapose 0.94 0.89 0.60 0.63 -0.13 0.14 -0.17 -0.09
IMU 0.96 0.92 0.83 0.89 0.39 0.58 0.14 -0.04
Both 0.97 0.92 0.83 0.87 0.43 0.56 0.17 -0.03

sensitivity Alphapose 0.94 0.92 0.49 0.57 0.11 0.36 0.00 0.12
IMU 0.98 0.95 0.80 0.90 0.36 0.70 0.12 0.11
Both 0.98 0.95 0.80 0.88 0.41 0.68 0.15 0.11

specificity Alphapose 0.99 0.96 0.99 0.97 0.77 0.76 0.93 0.87
IMU 0.98 0.97 0.99 0.98 0.91 0.88 0.95 0.86
Both 0.98 0.97 0.99 0.98 0.91 0.88 0.94 0.87

This complicates cross-validation methods based on leaving
subjects out, and contributes to high variability in classifier
performance metric estimates. We believe that larger sample
sizes will be essential for establishing high-performance
automated assessments.
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