
  

  

Abstract— Wearable sensors have made an impact on 

healthcare and medicine by enabling out-of-clinic health 

monitoring and prediction of pathological events. Further 

advancements made in the analysis of multimodal signals have 

been in emotion recognition which utilizes peripheral 

physiological signals captured by sensors in wearable devices. 

There is no universally accepted emotion model, though 

multidimensional methods are often used, the most popular of 

which is the two-dimensional Russell’s model based on arousal 

and valence. Arousal and valence values are discrete, usually 

being either binary with low and high labels along each 

dimension creating four quadrants or 3-valued with low, 

neutral, and high labels. In day-to-day life, the neutral emotion 

class is the most dominant leaving emotion datasets with the 

inherent problem of class imbalance. In this study, we show 

how the choice of values in the two–dimensional model affects 

the emotion recognition using multiple machine learning 

algorithms. Binary classification resulted in an accuracy of 

87.2% for arousal and up to 89.5% for valence. Maximal 3-

class classification accuracy was 80.9% for arousal and 81.1% 

for valence. For the joined classification of arousal and valence, 

the four-quadrant model reached 87.8%, while the nine-class 

model had an accuracy of 75.8%. This study can be used as a 

basis for further research into feature extraction for better 

overall classification performance. 

I. INTRODUCTION 

Emotions play a vital part in human behavior and 
psychology, exerting a powerful influence on processes such 
as perception, attention, decision-making, learning, and 
general well-being. To understand human nature, cognition 
and intellect, investigating and classifying emotional states is 
important [1]. Emotions are usually classified as levels of 
arousal and valence with high or low arousal and valence 
indicating possible emotional dysregulation. In healthcare, 
the opportunity to build an individual profile that recognizes 
sources of stress, anxiety, depression, or chronic diseases can 
be achieved by wellness tracking and possibly including 
emotion recognition and classification determined from 
wearable apps [2]. The automatic assessment of emotional 
states can then assist in developing treatment protocols for 
mental and physical disorders [3]. 
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Emotions are usually conveyed through body language, 
which can include facial expressions, body gestures, and 
intonation of voice. However, physiological manifestations of 
emotions can provide a more accurate representation since 
they occur subconsciously, are much harder to conceal, and 
are more difficult to manipulate compared to body language 
[3]. Not only that, but some disorders, such as autism, present 
impairments in facial expression, body postures, and 
movements associated with social interactions as well as 
deficient or deviant reaction to the emotions of other people 
[4]. Expression of emotions is linked with autonomic nervous 
system (ANS) activity, which in turn controls heart rate 
(HR), electrodermal activity (EDA), temperature and 
respiration patterns that can be used for determining emotion 
[3]. For this purpose, the emphasis in this research was on the 
identification of human arousal and valence states based on 
peripheral physiological signals acquired from wearable 
devices.   

II. EXPERIMENTAL METHOD 

A. Data 

The K-EmoCon dataset with comprehensive annotations 

of continuous emotions during naturalistic conversations was 

chosen to conduct the investigation. The dataset contains 

multimodal measures recorded during 16 sessions of 10-

minute paired debates between male and female students 

(age: 19 to 36), on a social topic. It contains emotion 

annotations from self, debate partner, and outside observers 

[5]. K-EmoCon provides data on emotion recognition outside 

a controlled laboratory condition. Blood volume pulse 

(BVP), electrodermal activity (EDA), heart rate (HR), and 

temperature, captured by the Empatica E4 Wristband, 

coupled with the self-annotations were used for emotion 

recognition. The Empatica E4 has been previously validated 

for use in emotion recognition [6]. 

B. Pre-processing 

BVP and HR signals were to the EDA and temperature 

signals by resampling to 4Hz. The signals were then 

normalized to a range between -1 and 1.  

Information from 5-second segments that match the 

emotion labels collected in the dataset was then extracted for 

analysis. Each segment includes both arousal and valence, 

annotated by the participants on a scale of 1 to 5. For binary 

dimensions, 1 and 2 are considered low while 3, 4, and 5 are 

considered high.   For the 3 class dimensions, scores of 1 and 

2 are considered low, 3 is neutral, and 4 and 5 are high. Table 

1 shows the total number of labels available for each score. 

 

A Comparative Study of Arousal and Valence Dimensional 

Variations for Emotion Recognition Using Peripheral Physiological 

Signals Acquired from Wearable Sensors* 

Feryal A. Alskafi, Ahsan H. Khandoker, Senior Member IEEE, and Herbert F. Jelinek, Member, IEEE 

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 1104



  

Table 1. Total number of available arousal and valence labels for each 
score 

Score Arousal Valence 

1 148 72 

2 933 483 

3 1193 1900 

4 702 752 

5 323 92 

 

Fig.1. shows a 1-minute excerpt (12 segments) from the 

signals for one of the participants after preprocessing with the 

corresponding arousal labels.  

 
Figure 1. BVP, EDA, HR, and Temperature signals for participant 8. The 

low, neutral, and high classes correspond to -1, 0, and 1 respectively for 

arousal and valence labels. 

C. Classification Models and Platform 

 The experimental setup included the implementation of 

machine-learning algorithms using the MATLAB 

classification learner application with its preset parameters. 

Decision trees (fine, medium, and coarse), support vector 

machines (linear, quadratic, cubic, fine Gaussian, medium 

Gaussian, and coarse Gaussian), k-nearest neighbors (fine, 

medium, coarse, cosine, cubic, and weighted), kernel naive 

Bayes, and ensembles (boosted trees, bagged trees, subspace 

discriminant, subspace KNN, and RUSBoosted Trees) 

classifiers were trained using the preset hyperparameters as a 

starting point. A holdout validation scheme was used with 

30% of data held out for testing.  

III. RESULTS 

Fig. 2. displays the results of comparing the performance 

of multiple classifiers for the different dimensionality 

variations.  

A.  Binary Classification  

For the classification of 324 low and 665 high arousal 

instances, five classifiers achieved accuracy above 80% 

(Table 2).  

 
Table 2. Accuracy and correctly classified instances for binary 

classification of arousal.  

Classifier Accuracy % 

Correctly 

Classified Low 

Instances % 

Correctly 

Classified 

High Instances 

% 

Fine Gaussian 

SVM 
84.6 67 93.2 

Fine KNN 87.2 79 91.1 

Medium KNN 81.5 67.3 88.4 

Cubic KNN 80.9 66.4 88 

Weighted KNN 86.8 74.4 92.8 
Maximum values in each column are in bold. 

The classification of 166 low and 823 high valence 
instances resulted in six classifiers achieving accuracy above 
85% (Table 3). 

Table 3. Accuracy and correctly classified instances for binary 
classification of valence. 

Classifier 
Accuracy 

% 

Correctly 

Classified Low 

Instances % 

Correctly 

Classified High 

Instances % 

Fine Gaussian 

SVM 
89.5 52.4 97 

Fine KNN 88 69.9 91.6 

Medium KNN 87.4 48.2 95.3 

Cubic KNN 87.4 47 95.5 

Weighted KNN 89.1 62.7 94.4 

Ensemble Bagged 

Trees 
87.8 39.8 97.4 

B. Three-Class Classification  

The classification of 324 low, 357 neutral, and 308 high 

arousal instances resulted in six classifiers achieving 

accuracy above 70% (Table 4). 

 
Table 4. Accuracy and correctly classified instances for 3-class 
classification of arousal. 

Classifier 
Accuracy 

% 

Correctly 

Classified 

Low 

Instances 

% 

Correctly 

Classified 

Neutral 

Instances 

% 

Correctly 

Classified 

High 

Instances % 

Fine Gaussian 
SVM 

79.9 81.5 81.2 76.5 

Fine KNN 80.9 81.2 79.8 81.8 

Medium KNN 71.1 79.1 68.9 65.1 

Cubic KNN 70.7 76.6 70.9 64.2 

Weighted KNN 80 80 79.3 80.8 

Ensemble 
Bagged Trees 

74.9 73.8 76.2 74.6 

 

For Valence, the classification of 166 low, 570 neutral, 

and 253 high valence instances resulted in seven classifiers 

achieving accuracy above 70% (Table 5). 

 
Table 5. Accuracy and correctly classified instances for 3-class 

classification of valence. 

Classifier 
Accuracy 

% 

Correctly 

Classified 

Low 

Instances 

% 

Correctly 

Classified 

Neutral 

Instances 

% 

Correctly 

Classified 

High Instances 

% 

Fine Gaussian 

SVM 
79.5 50.6 92.8 68.4 

Fine KNN 80 69.9 84.9 75.5 

Medium KNN 74.5 43.3 89.8 60.5 

Cosine KNN 70.7 41 86.8 53.8 

Cubic KNN 73.5 42.2 88.6 60.1 

Weighted 

KNN 
81.1 56.6 90.2 76.7 

Ensemble 

Bagged Trees 
78.5 59 91.2 62.5 

C. Quadrant Classification 

The classification of 51 low valence/low arousal, 550 

high valence/high arousal, 115 low valence/high arousal, and 

273 high valence/low arousal instances resulted in seven 

classifiers achieving accuracy above 80% (Table 6).  
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Table 6. Accuracy and correctly classified instances for the joined 4-class 

classification of arousal and valence. 

Classifier 
Accuracy 

% 

Correctly 

Classified 

LALV 

Instances 

% 

Correctly 

Classified 

HAHV 

Instances 

% 

Correctly 

Classified 

LAHV 

Instances 

% 

Correctly 

Classified 

HALV 

Instances 

% 

Fine 
Gaussian 

SVM 

85.8 64.7 92.9 71.3 95.7 

Fine KNN 87.8 76.5 92.4 77.6 94.8 

Medium 
KNN 

82.3 52.9 88.2 71 93.9 

Cosine 

KNN 
80.4 52.9 86 68.4 93.9 

Cubic 
KNN 

82.8 52.9 88.7 71.7 93.9 

Weighted 

KNN 
87.3 70.6 93.8 74.6 93 

Ensemble 
Bagged 

Trees 

82.5 51 91.1 66.5 93 

LALV: Low Arousal/Low Valence, HAHV: High Arousal/High Valence, LAHV: Low arousal/High 

Valence, HALV: High Arousal/Low Valence . 

D. Nine-Class Classification 

Table 7 shows the results of seven classifiers with an 

above 60% when classifying 52 low valence/low arousal, 49 

low valence/high arousal, 65 low valence/neutral arousal, 95 

high valence/high arousal, 85 high valence/low arousal, 73 

high valence/neutral arousal, 188 neutral valence/low 

arousal, 219 neutral valence/neutral arousal, and 163 neutral 

valence/high arousal instances. 

 

IV. DISCUSSION 

A. Binary Classification 

In the binary classification models, the results were in 
agreement with previous studies that used the same binary 
dimensions and machine learning classifiers [7]. The higher 
percentage of correctly classified high instances is due to the 
class imbalance [8]. Fine KNN performed best for the arousal 
model in terms of both accuracy at 87.2% and percentage of 
correctly classified low instance at 79%. For valence, the 
overall accuracy was higher, but the performance in regard to 
the low-class classification was lower. Fine Gaussian SVM 
had the highest accuracy at 89.5% though it was third-best in 

Figure 2. Comparison of classifiers for the classification of arousal and valence using BVP, EDA, HR, and Temperature signals. (a) Arousal and valence 

classified into low and high each. (b) Arousal and valence are classified into low, neutral, and high each. (c) Arousal and valence jointly classified into 
four classes: LALV, HAHV, LAHV, and HALV (d) Arousal and valence jointly classified into nine classes: LVHA, NVHA, HVHA, LVNA, NVNA, HVNA, 

LVLA, NVLA, and HVLA. 

(a) (c) 

(b) (d) 
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terms of correctly classified low instances at 52.4% 
compared to Fine KNN at 69.9%.  

B. Three-Class Classification 

Since we are generally interested in identifying negative 

emotion, applying the neutral label to the low would 

establish a false balance. The neutral emotion condition is 

both the most dominant and the most uncertain emotion 

form of most everyday situations [9]. The overall accuracy 

decreased for both models but remained in line with 

expected values [7]. The percentage of correctly classified 

low instances increased in the arousal model but decreased 

in the valence. For both models, it can be inferred that Fine 

KNN is the suitable choice. 

C. Quadrant Classification 

The four quadrants were defined according to the 

combined level of arousal and valence representing the 

emotion circumplex. In the current analysis, the low 

valence/low arousal class has the least number of samples 

compared to the high valence/high arousal class. Though the 

overall accuracy is high, LALV and HAHV percentages 

reflect the imbalance. Once again Fine KNN is the best 

classifier at 87.8% accuracy and 76.5% correctly classified 

LALV instances. 

D. Nine-Class Classification 

The number of samples per class for this model shows 

data imbalance around neutral valence, less so with arousal. 

Overall accuracy is lower, with Fine KNN the highest at 

75.8%, but the deciding factor is the percentage of correctly 

classified instances. Fine Gaussian SVM, Fine KNN, and 

Weighted KNN, all perform best for two low-occurring 

classes, leaving the decision to the highest accuracy with 

Fine KNN.  

V. CONCLUSION 

BVP, EDA, HR, and temperature were used as predictors 
for multiple classifiers trained using variations of emotion 
dimensions and class distinctions. Performance was observed 
according to both accuracy and number of correctly classified 
instances as assessing a model’s performance by accuracy 
alone is not useful in such applications where the datasets are 
class imbalanced and biased towards certain classes. The 
choice of classifier must take into consideration the low-
occurring classes as they are usually the target of 
classification optimization. Overall, the Fine KNN classifier 
was found to perform best with this current dataset. The 
various dimensions showcased that higher number of classes 
decreased the overall emotion recognition accuracy. For the 
separate arousal and valence models, the 2-class models 
performed better accuracy-wise while the 3-class models 
showed higher balance between classes in terms of correctly 
classified instances. The same can be observed for the joined 
models.  

 

 

Table 7. Accuracy and correctly classified instances for the joined 9-class 
classification of arousal and valence. 
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Accuracy % 75.1 75.8 62.1 61.4 74 68.6 
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LVHA 85.7 83.7 71.4 67.3 83.7 75.7 

NVHA 72.2 77.2 64.8 66.7 71.6 71.6 

HVHA 57.9 67.4 49.5 49.5 69.5 48.4 

LVNA 84.8 81.8 65.2 66.7 80.3 80.3 

NVNA 82.7 75.9 71.4 71.4 76.8 70 

HVNA 59.5 66.2 48.6 40.5 56.8 54.1 

LVLA 86.3 94.1 68.6 62.7 90.2 78.4 

NVLA 78.6 76.5 59.9 59.9 73.8 72.7 

HVLA 65.9 69.4 51.8 51.8 71.8 65.9 
LVHA: Low Valence/High Arousal, NVHA: Neutral Valence/High Arousal, HVHA: High 

Valence/High Arousal, LVNA: Low Valence/Neutral Arousal, NVNA: Neutral Valence/Neutral 

Arousal, HVNA: High Valence/Neutral Arousal, LVLA: Low Valence/Low Arousal, NVLA: Neutral 

Valence/Low Arousal, HVLA: High Valence/Low Arousal. 
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