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Abstract— We present an efficient utilization of a machine
learning (ML) method concentrating on the ‘AI for social good’
application. We develop a digital dementia biomarker for early-
onset dementia forecast. The paper demonstrates encouraging
preliminary results of EEG-wearable-based signal analysis and
a subsequent classification adopting a signal complexity test
of a multifractal detrended fluctuation analysis (MFDFA) in
emotional faces working memory training and evaluation tasks.
For the digital biomarker of dementia onset detection, we
examine shallow- and deep-learning machine learning models.
We report the best median accuracies in a range of 90%
for random forest and fully connected neural network clas-
sifier models in both emotional faces learning and evaluation
experimental tasks. In addition, the classifiers are trained
in a ten-fold cross-validation regime to discriminate normal
versus mild cognitive impairment (MCI) cognition stages using
MFDFA patterns from four-channel EEG recordings. Thirty-
five volunteer elderly subjects participate in the current study
concentrating on simple wearable EEG-based objective demen-
tia biomarker progression. The reported outcomes showcase an
essential social benefit of artificial intelligence (AI) employment
for early dementia prediction. Furthermore, we improve ML
employment for the succeeding application in an uncomplicated
and applied EEG-wearable examination.

Clinical relevance— This project proposes an EEG-wearable-
based objective cognitive biomarker candidate for a mild cog-
nitive impairment (MCI) evaluation to substitute conventional
idiosyncratic paper and pencil tests.

I. INTRODUCTION

The growth of dementia cases worldwide significantly
affects healthcare expenses. Nearly 50 million older adults
experience a dementia spectrum of neurocognitive dys-
functions, according to the World Health Organization
(WHO) [1]. Moreover, this number is expected to triple
within the next three decades [2]. This growing emergency
requests feasible employment of AI to improve quick di-
agnostics for consequent cognitive well-being monitoring
and protection with so-called “digital pharma” or “beyond a
pill” non-pharmacological-therapeutical (NPT) strategies [3].
A final dementia assessment so far is only possible by
postmortem autopsy [2]. A cognitive status exam, such as
the Montreal Cognitive Assessment (MoCA) [4], [5], is
regularly appropriated for the severity of dementia quantifica-
tion. Objective brain imaging approaches, such as functional
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magnetic resonance imaging (fMRI) [6] or EEG monitor-
ing [7], [8], [9] concurrently with behavioral tests [10], [11],
are recently in continuous increase to implement an early
onset prediction of a mild cognitive impairment (MCI) and
subsequent monitoring [2].

We propose to examine a wearable EEG device in this
project to develop a viable home-based biomarker. We
choose to use a commercial wearable MUSE EEG system
(InterAxon Inc., Toronto, Canada) to collect EEG data.
The MUSE headband affords an acceptable event-relation-
potential (ERP) and broadband EEG acquisition as confirmed
in [12], [13]. However, dry-electrode-based EEG systems
result in increased noise in EEG signals relating to clinical-
grade amplifiers. To manage the more noisy time series, we
recommend employing a signal complexity measure of a
multifractal detrended fluctuation analysis (MFDFA), which
is more robust to noise [14], [15].

II. METHODS

We conduct EEG recording trials with older adults in the
RIKEN Center for Advanced Intelligence Project (AIP). The
study adheres to guidelines of human subject involvement
and ethical evaluation from the RIKEN Ethical Committee
for Experiments with Human Subjects and The Declaration
of Helsinki. In the study, 35 elderly take part; a number of
females = 22; mean age = 73.5± 4.85 years old; recruited
from Silver Human Resources Center and Honobono Labo-
ratory, Japan. All participants receive monetary gratification,
and they give written informed consent.

We apply a four-channel portable MUSE 2016 headband
by InteraXon Inc., Canada. It has been shown already that the
MUSE device allows for a reliable EEG capture from preset
AF7,AF8,T P9, and T P10 dry electrode locations with a
careful setting [12]. The ground reference electrodes are
set at the forehead. We prepare our in-house EEG capture
environment in Python using muse-lsl [13] library, which
communicates with MAX [16] visual programming envi-
ronment short video stimulus presentation. We disinfect the
MUSE headband with alcohol before a placement subject’s
head with a careful check for EEG average amplitudes not to
exceed thresholds indicating EMG contamination. We apply
a 50Hz notch filter to remove power line interference, and
we further bandpass the signal in a spectrum of 1 ∼ 30Hz to
minimize EEG out-of-band noise.

The experimental procedure is the same as in the pre-
viously published behavioral paradigm by our group [11].
Each participant sits in a chair in front of a computer
display. We use a touchscreen tablet in the procedure. The
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Fig. 1. MFDFA feature distributions in four-channel EEG during the
emotional facial video subject training (encoding and intuitively straight-
forward/procedural) sessions. The MCI subjects had significantly higher
median MDFA scores on temporal and prefrontal lobes (TP9, TP10, and
AF7) electrodes Wilcoxon rank sums tests evaluated.

computer screen displays video stimuli from a Mind Reading
database [17] and response targets in a training mode. In the
first training (encoding) part of the experiment, the partici-
pant’s task is to learn the procedure by copying a reference
emotion judgment on the computer screen in an implicit
working memory visuospatial skill. In the final testing (de-
coding) part of the experiment, no suggestions appear on the
screen, and the subjects use newly acquired learning implicit
emotion evaluation skills. Our experimental hypothesis is that
EEG complexity modulated by cognitive skills shall be a
good dementia biomarker candidate. Furthermore, since both
training (easy and procedural) and testing (more complex and
requiring application of newly learned skills), experimental
procedures require from subjects sustained focused attention
and short-term implicit learning skills, both paradigms shall
elucidate normal versus MCI cognition-related modulation.

We segment EEG into eight-second long intervals with
MNE version 0.23.0 package in Python [18]. We start each
segment at video stimulus onset time. Each segment in
each electrode channel separately is next processed for the
signal complexity evaluation as follows. In chaos theory,
stochastic processes analysis, and time-series processing, a
detrended fluctuation analysis (DFA) [19], [20] method is
often employed for determining a statistical self-affinity. The
DFA helps analyze time series that appear to be the so-called
long-memory processes, which could be characterized by
diverging correlation resulting in a time power-law decaying
autocorrelation function or 1/f noise frequency spectrum
profile (EEG is such a signal as shown in [21], [22]).
The generalized MFDFA calculation procedure consists of

Fig. 2. MFDFA feature distributions in four-channel EEG during the
emotional facial video subject training (decoding and ) sessions. The MCI
subject had significantly higher median MDFA scores in all (AF7, AF8,
TP9, and TP10) electrodes evaluated with Wilcoxon rank sums tests.

five steps, of which the first three are essentially identical
to the conventional DFA procedure as in [19], [20]. The
two additional steps, as proposed in [14] and efficiently
implemented in [15], require averaging of overall segments
from the standard DFA procedure to obtain the qth order
fluctuation function and subsequently a determination of a
scaling behavior of the fluctuation functions by analyzing
log-log plots versus the scale for each value of order q
(details in [14]). For stationary time series, the MFDFA at
order 2 is equal to a well-known Hurst exponent; thus, the
MDFA is also regarded as a generalized Hurst exponent [14].
We obtain MFDFA features, using a Python implantation
by [15], for each channel separately from eight-second-
long post-stimulus intervals (short videos with emotional
facial expressions from [17]) of the recoded and segmented
EEG time series. The four-channel derived feature vectors
resulting from each trial are used together as input for
machine learning model training and evaluation using a ten-
fold cross-validation procedure with careful separation of
training and testing subsets to avoid overfitting.

We examine machine learning models, as available in the
scikit-learn library version 0.24.2 [23], for binary classifica-
tion of MCI versus normal cognition of the 35 participants
(22 MCI and 23 normal) in our emotional facial expression
short video working memory study using input MDFA fea-
ture vectors (62 on average from each subject; 1106 normal
and 1088 feature vectors) obtained from four EEG channels.
We apply a ten-fold cross-validation procedure due to a
limited number of available classifier training examples, with
a chance level of 50%. Furthermore, we apply the machine
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learning training and evaluation procedures to EEG epoch-
derived features, not on a leave-one-one-subject level due
to the abovementioned limited number of training samples.
Similarly, as in our previously published study [11], we
assess the following machine learning models using input
feature standard scaling by deducting a mean and dividing
by a signal variance: a logistic regression (LR) with a
liblinear solver and a maximum iteration number of 1000;
a linear discriminant analysis (LDA) with a least-squares
solver; a linear support vector machine (linearSVM) using a
l2−penalty linear kernel and a squared hinge loss function;
a radial basis function support vector machine (rbfSVM)
using a kernel coefficient γ = 1/4; a polynomial support
vector machine (polySVM) with a second-degree polynomial
kernel and γ = 1/4 and an independent term in kernel
function coe f0 = 1.0; a sigmoid support vector machine
(sigmoidSVM) with γ = 1/4; a random forest classifier
(RFC) using a number of trees in the forest equal to 50,
split criterion by a mean squared error, without a maximum
tree depth limitation, and a minimum number of samples
required for a split set to 2; a fully connected deep neural
network (FNN) with rectified linear units (ReLU), using
a configuration of a single input and three hidden layers
(512, 256, 128, 32, and 16 units), a two-unit output softmax
layer, and 50000 training epochs, with an ADAM optimizer,
a learning rate set to 0.001, and a log-loss function. We
use 10% of training data for evaluation in a ten-fold-cross-
validation run for each above machine learning model.

III. RESULTS

Results of MFDFA distributors we summarized in Fig-
ures 1 and 2 for subject training and testing sessions re-
spectively. We observed statistically significantly higher, as

Fig. 3. The emotional face video subject training (encoding session) clas-
sification results of the evaluated machine learning models of normal versus
MCI EEG patterns using MFDFA features derived from four electrodes and
concatenated together. The chance level in the experiment was 50%. The
best median results (above 90%) were for the fully connected neural network
(FNN) and random forest (RFC) classifiers.

evaluated with Wilcoxon rank sums tests for pk ≪ 0.01,
MFDFA values for MCI (MoCA≤ 25) evaluated subjects
comparing to normal cognition (MoCA> 25) participants in
our study group.

Results of EEG binary classification of normal (MoCA>
25) versus MCI (MoCA≤ 25) we summarized in the form of
bar-plots with error bars depicting 95% confidence intervals
of classification results using the evaluated classifiers for
training (encoding) and testing (decoding) tasks in Fig-
ures 3 and 4, respectively. The RFC and FNN classifiers
resulted in the best median accuracy exceeding 90% in
training and testing tasks. Both best classifiers resulted in
slightly better, but not statistically significantly different,
results in the subject training (encoding) phase comparing
to testing (decoding).

IV. CONCLUSIONS

We reported a project showcasing novel results in EEG
response distributions in working memory implicit training
(encoding) and testing (decoding) tasks. We showed that
elderly subject MFDFA patterns obtained from four-channel
wearable EEG recordings resulted in significantly differing
temporal and frontal electrode locations in implicit working
memory training and testing tasks using short videos with
emotional facial expressions. The machine learning median
classification accuracies resulted in a range of 90% for the
best methods using RFC and FNN models as summarized
in Figures 3 and 4 for subject training and testing tasks,
respectively.

The well-off employment of such an AI/ML-based demen-
tia onset forecast shall serve well the aging societies globally.

We also acknowledge the intrinsic limitations of the de-
veloped approach as we only replicate human-error-prone

Fig. 4. The emotional face video subject testing (encoding session) classi-
fication results of the evaluated machine learning models of normal versus
MCI EEG patterns using MFDFA features derived from four electrodes and
concatenated together. The chance level in the experiment was 50%. The
best median results (above 90%) were for the fully connected neural network
(FNN) and random forest (RFC) classifiers.
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subjective cognitive evaluation criteria rendered to binary
MCI thresholds at a level MoCA ⩽ 25, which are only
guesstimates of dementia. Furthermore, the current approach
included a limited sample of participants, which is an addi-
tional restriction of the detailed classification outcomes. AI-
based dementia predictors must obey proper ethical standards
shortly to avoid any possible abuse. We also plan a subse-
quent step of our research and further experiments with a
larger group of subjects and expand measurement modalities
to cover vascular dementia with combined EEG and fNIRS
monitoring.
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