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Abstract— We present the use of two game-like tasks, Catnip
and Dinorun, to explore affective responses to volitional control
perturbations. We analyze behavioral and physiological mea-
sures with the self-assessment manikin (SAM), pupillometry,
and electroencephalography (EEG) responses to provide intra-
trial emotional state as well as inter-trial correlates with self-
reported survey responses. We find that subject gameplay char-
acteristics significantly correlate with valence and dominance
scores for both games, and that perturbations to the games
produce a measurable decrease in response scores for Dinorun.
During perturbation events, pupillometry analysis reveals con-
siderable SAM-agnostic dilation, with stronger responses in
more rigid trialized event structures. Furthermore, analyses of
neural activity from central and parietal regions demonstrate
significant measurable evoked responses to perturbed events
across the majority of subjects for both games. By introducing
perturbations, this set of experiments and analyses inform and
enable further studies of affective responses to the loss of
volitional control during engaging, game-like tasks.

I. INTRODUCTION

Brain-computer interfaces enable direct access to neural
signals that can be used to control systems that interact with
and augment human capabilities. Current high-performance,
non-invasive interfaces map evoked signals recorded from the
brain to control signals through task and controller design.
Such systems have yielded compelling demonstrations in
which individuals are able to control spellers and interact
with computers [1]. In addition to direct control, neural
interfaces have also been used to extract neural correlates
of cognitive and emotional state to evaluate responses to
novel stimuli [2]. To date, both classes of systems work
well under constrained, laboratory-based environments but
generalization to dynamic interactions more similar to natu-
ralistic human behavior remains a challenge. Thus, it remains
unclear how well the current knowledge of human brain
function translates into the highly dynamic interactions.

The use of games in task design aims to enable more
complex interactions without modifying existing, physically
constrained recording setups. Consideration of both the game
dynamics and the neural response signals has generated a
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series of effective pairings: time-locked continuous control
using event-related responses (ERPs) including P300 and
N400 [3], visual-stimuli driven choice using steady-state
visual evoked potentials (SSVEP), and for motor imagery-
based control using spectral power features [4].

Evaluating goal-oriented control schemes, passive-BCIs
[5] present an alternative where ERP error signals are used
to evaluate task correctness. This approach releases users
from encoding intermediate objectives, but relies on more
rigid goal definitions to detect the neural response. Affective,
or more broadly non-volitional, neural responses provide
a complementary signal that may more generally measure
analogues to reward. A few such studies using games (e.g.
Pacman [6]) have demonstrated the utility of frustration con-
ditions including noisy input to influence subject’s valence,
arousal, and dominance. Other game studies have utilized
stress-inducing scenarios to elicit emotional responses [7].

Beyond neural responses, many studies have demonstrated
the effectiveness of extracting physiological responses from
other bio-sensors. Notably, pupillometry has rapid response
times to stimuli and serves as an autonomic benchmark.
Though susceptible to visual confounds in dynamic scenes
including luminance, pupil size can provide measures of sur-
prise and excitement. Gaze patterns can enable scene saliency
identification, and pupil fixation can provide measures of
interaction and attention [8]. Other physiological measures
include heart-rate variability, galvanic skin response, and
facial response; these also provide affective correlates, but
generally have longer timescales or weaker responses.

Here we present two engaging, variable complexity games,
Catnip and Dinorun. Catnip is a simple optimal-pursuit
cursor task that presents visual stimuli perturbed to effec-
tively modify closed loop control reliability. Dinorun is an
obstacle avoidance task that increases in difficulty over time,
and presents added difficulty through noisy controller input.
Leveraging scalp EEG, pupillometry, subject gameplay, and
self-assessment survey responses, we demonstrate changes
in affective responses tied to tunable game parameters. We
use these results to motivate further work utilizing game-like
tasks to explore more informative affective dimensions and
physiological measures sensitive to dynamic interactions.

II. METHODS
A. Subjects

Five healthy, college-aged subjects (Table I) participated
in a dual-task game study in a purely voluntary manner, after
providing informed written consents, under experimental
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protocols approved by the Institutional Review Board of the
University of California, San Diego (#140053).

Catnip Dinorun
Subject Age Gender Handedness Sessions Sessions

620 28 Male Right 1 1
850 28 Male Right 2 2
1003 18 Male Right 2 2
1005 26 Male Left 2 2
1008 22 Male Right 2 2

TABLE I. Subject details

B. Data Collection

Participants were oriented in a chair facing an experiment
table providing direct visibility to a monitor and easy access
to a keyboard and mouse. The experiment room was dimly
lit, soundproof, and electrically isolated. Each subject was
monitored by video from an observation room and directly
instrumented with an EEG capture system.

The EEG data were acquired using a battery-powered
Biosemi ActiveTwo system recording at a down-sampled rate
of 512 Hz. A 64-channel electrode cap in standard 10-20
configuration was used with active wet Ag/AgCl electrodes.
CMS and DRL channels were used as references. An optical
interconnect from the amplifier to the recording system was
used to minimize transmission noise.

A GazePoint GP3 eye-tracking device recording 1280 x
1024 pixels at 60 Hz was used to record pupil responses.
The camera was positioned at the base of the display and
oriented to provide a full view of each participant’s face.

The task stimuli were presented on a 20.1-inch display
screen positioned ∼ 70 cm away from the subject. Two
tasks were developed using PsychoPy and PyGame. Self-
paced instructions were provided to the subjects prior to
each session on the monitor. Event markers generated syn-
chronously to stimuli presentation were sent to the EEG and
camera recording systems. Data streams were timestamped
and synchronized using Lab Streaming Layer (LSL).

C. Tasks

The games in this study were designed to engage partici-
pants while presenting task stimuli. A cursor tracking game,
Catnip (Fig. 1a), provides an engaging optimal-pursuit task.
The subject controls a paw sprite using mouse movement
and attempts to capture the catnip by clicking. As the player
moves, the target attempts to maximize its distance from the
cursor. After each successful capture, the target spawns at
a random location. Visual perturbations in the form of user
movement feedback loss are introduced at a fixed probability
during specific, randomly ordered trials. Each trial lasts 30
seconds and performance feedback is provided following the
game through a subject-specific high-score page.

The second game, Dinorun [9] (Fig. 1b), provides an
obstacle avoidance task. The subject uses the spacebar and
down arrow key on a standard keyboard to control a dinosaur
sprite. As the environment scrolls across the screen, the sub-
ject must avoid different obstacles (cacti, pterodactyl). The

Fig. 1: a) Catnip game during a visual perturbation trial de-
picting sample player and target avoidance paths. b) Dinorun
game during control and visual perturbation scenarios. Game
backgrounds are removed for visualization.

game increases in difficulty over time through faster move-
ment speeds. Input perturbations in the form of randomly
dropped key-presses are introduced at a fixed probability
throughout gameplay during specific trials. Each trial lasts
approximately 60 seconds during which the subject plays
through multiple games under the same conditions.

After each trial of both games, the participants answered
the self-assessment manikin survey (SAM) [10] and indi-
cated whether the game included any frustration conditions.
Five randomly ordered blocks of standard and perturbed
gameplay comprised a single session. Each subject com-
pleted up to two sessions for each game.

D. Signal Conditioning

EEG data for each subject are loaded into EEGLAB
toolbox [11]. A standard BioSemi 64-channel head model
provided by the manufacturer is used for electrode po-
sitioning. Signals are bandpass filtered 0.5-55 Hz and
clean rawdata is used to remove bad channels. Inde-
pendent component analysis is then applied, independent
components (ICs) characterized with ICLabel [12], brain ICs
projected back to the electrode space, and lastly z-scored. In
the analysis, primarily the central and parietal electrodes [13]
are examined against ERP signals referenced from -0.3 to 0
seconds from condition onset.

The 60 Hz Gazepoint video streams were analyzed to ex-
tract the pupil size. A semi-automated pipeline was followed:
(1) identify task event time windows, (2) manually select a
region of interest in image frame, (3) run the PyGaze [14]
algorithm to fit an ellipse to the pupil at 30 Hz. Each frame
was then manually inspected for correctness and re-annotated
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where necessary. Prior to analysis, subject blinking frames
were removed, pupil size was normalized per session across
annotated data, and linear interpolation was used to resample
the pupil data to the recording frequency.

III. RESULTS

To evaluate the elicited perceived-affect of Catnip, trends
in the SAM responses across subjects are measured against
game variables. Pooling the responses for all the trials across
subjects, Fig 2A depicts a clear positive trend between
player-target distance, valence and dominance measures. A
Spearman rank-order test was used to measure the correlation
between player-target distance and perceived emotion. All
reported results are Benjamini-Hochberg false-discovery rate
(FDR) corrected between conditions across subjects (α =
0.05). Valence (v) and dominance (d) both had significant
correlations, rv = 0.44 and rd = 0.61 (p < 0.05). Player
performance measured by game score at the end of each
trial similarly presented significant correlations, rv = 0.47
and rd = 0.49 (p < 0.05). Comparing the perturbation
and standard gameplay (Fig 2B), subject survey responses
were lower on average, indicating weak influence on affective
responses during Catnip gameplay.

Fig. 2: Catnip task performance and SAM responses across
subjects. (A) Average player-target distance, and (B) average
survey response for standard and perturbed gameplay.

Evaluating the game trends during Dinorun sessions, Fig
3A depicts a similar positive trend for valence and dominance
and a neutral response for arousal with respect to game
score. Fig 3A can also be related to game duration due to
the direct relationship with the score. The FDR corrected
Spearman correlation between conditions and across subjects
for valence and dominance both had significant correlations,
rv = 0.53 and rd = 0.56 (p < 0.05). Examining the per-
turbation conditions independently from standard gameplay
(Fig 3B), subject survey responses were significantly lower
for valence and dominance (p < 0.05).

The pupillometry feature extracted for Catnip and Dinorun
trials provides an accessible physiological marker of decision
outcomes. The difference between the median pupil diameter
of 250 ms windows, 300 ms preceding and 50 ms following
perturbation onset, are used. Fig 4 shows significant dilation
between each condition for both games (p < 0.05).

Neural responses to the Catnip perturbation events are
shown in Fig 5A. Three electrodes from the central-parietal
region, previously shown to be modulated by surprise [13],
were selected that maximized evoked responses in hold-out
trials. Standard events are neural activity with an onset 1-2

Fig. 3: Dinorun task performance and SAM responses across
subjects. (A) Average game score, and (B) average survey
response for standard and perturbed conditions.

Fig. 4: Pupil responses to perturbation and standard events
during Catnip and Dinorun, summarized across subjects. The
difference in pupil sizes between the two games are likely
due to variations in game scene illumination.

seconds prior to perturbation onset. A 300ms window prior
to condition onset for each epoch was used as a baseline. To
evaluate the significance, a bootstrap analysis applied to a
window between +50 ms and +150 ms aligned to minimize
P300 overlap per subject was used. The bootstrap was
evaluated over 20,000 random samplings using the difference
of the median normalized amplitude in the window between
perturbed and standard conditions. FDR corrected p-values
for all subjects resulted in statistically significant (p < 0.05)
differences between the two conditions.

Dinorun perturbation event response potentials are shown
in Fig 5B. Electrodes in the central and parietal regions
were examined and similarly down selected to three elec-
trodes that maximized evoked responses in hold-out trials.
Standard and perturbed conditions are extracted from game-
over conditions caused by collisions with obstacles. A 300ms
window prior to condition onset is used as a baseline. A
bootstrap analysis applied to a window from 100 ms to
200 ms post-onset was selected to maximize the condition
response difference per subject. The bootstrap was evaluated
over 20,000 samplings using the difference of the median
normalized amplitude in the window between perturbed and
standard conditions. FDR corrected p-values for all except
subject 620 resulted in statistically significant (p < 0.05)
differences between the two conditions.

IV. DISCUSSION

Affective decoding has benefited from studies leveraging
psychometric insights to neural correlates. Linking these
two domains requires exploring task constructs that allow
the analysis of physiological responses to intentional con-
trol, perturbations to volitional commands, and affective
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Fig. 5: Average evoked responses for a single exemplar
subject between perturbed and standard event conditions for
(A) Catnip and (B) Dinorun. The grey region highlights the
100ms used for bootstrap evaluation. The electrode map de-
picts the electrodes, individual colors per subject, evaluated.
The blue and orange electrodes identify the depicted neural
response channels for Catnip and Dinorun, respectively.

responses. This study proposes utilizing engaging, game-like
tasks to explore their utility in eliciting such responses.

For two such games, we demonstrated that across subjects,
there is a clear positive correlation between controllable
game conditions including active target avoidance and game
duration to reported SAM metrics of valence and dominance.
This can be attributed to both satisfaction and direct influence
in being able to complete the game tasks successfully. The
lack of a strong correlation in Catnip or Dinorun for arousal
indicates this measure is not continuously modulated by the
task, but may instead be transient or measure task engage-
ment. Moreover, the strong correlation between valence and
dominance suggests an interaction between the two measures
and a need for additional affective dimensions.

Physiological markers more outwardly accessible confirm
the separability of events at a finer timescale than the trial
surveys in both tasks. While task perturbations resulted in
significant pupil responses, no significant trend was observed
across subjects in relation to the SAM responses. This lack of
sensitivity, however, may be due to the small evaluation win-
dow (<500ms): the weaker event onset and subject observed
outcome alignment for both games might increase the time
before a response is effectively measurable. Furthermore,
specific task and game design considerations should be made
to ensure isoluminant conditions and minimize subject vision
fatigue due to active infrared emission to better ensure clean
pupillometry measures.

The neural responses were also analyzed at the event scale
and demonstrated a unique response to the conditions. While
the evoked response in Catnip was less pronounced, there is
a measurable response prior to the P300 window. Dinorun
similarly demonstrated a separable evoked response, and
with a stronger response across subjects indicating a more
stereotyped response from the task. The difference between
the two games is likely due to the stronger event alignment
and feedback of Dinorun compared to Catnip.

Overall, we have presented a unique pair of games with
different interaction schemes, perturbation conditions, and
trial-definitions for which we have explored relationships be-
tween self-reported, behavioral, and pupillometry responses.
We have also identified areas that require further analysis,
specifically around the sensitivity of physiological responses
to graded measures, which will further enable game-driven
studies that allow the assessment of more complex affective
responses and interactions.
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